
Behavior trees for AI: How they work

Chris Simpson

Jul 17, 2014

1 Introduction

While there are plenty of behaviour tree tutori-
als and guides around the internet, when exploring
whether they would be right for use in Project Zom-
boid, I ran into the same problem again and again.
Many of the guides I read focused very heavily on
the actual code implementations of behaviour trees,
or focused purely on the flow of generic contextless
nodes without any real applicable examples, with
diagrams like so:

While they were invaluable in helping me under-
stand the core principles of Behaviour Trees, I
found myself in a situation where despite knowing
how a behaviour tree operated, I didn’t really have
any real-world context as to what sort of nodes I
should be creating for the game, or what an actual
fully developed behaviour tree would look like.

I’ve spent a ton of time experimenting (for the
record since Project Zomboid is in Java I’m using
the fantastic JBT1 so didn’t have to concern my-

1http://sourceforge.net/projects/jbt/

self with the actual code implementation. However
there are plenty of tutorials out there focusing on
this, as well as implementations in many commonly
used game engines.

It’s possible some of the more specific decorator
node types I detail here are actually native to JBT
instead of general behaviour tree concepts, but I’ve
found them to be integral to the way PZ behaviour
trees work, so they are worth considering for im-
plementation if your particular behaviour tree does
not support them.

I’m not professing to be an expert on the subject,
however over the development of the Project Zom-
boid NPCs I’ve found the results I’ve had to be
pretty solid, so thought I’d bash out a few things
that if I’d known would have made my first at-
tempts go a lot more smoothly, or at least opened
my eyes to what I could accomplish with behaviour
trees. I’m not going to dig into the implementation
but just give a few abstracted examples that were
used in Project Zomboid.

2 Basics

So the clue is in the name. Unlike a Finite State
Machine, or other systems used for AI program-
ming, a behaviour tree is a tree of hierarchical
nodes that control the flow of decision making of
an AI entity. At the extents of the tree, the leaves,
are the actual commands that control the AI entity,
and forming the branches are various types of util-
ity nodes that control the AI’s walk down the trees
to reach the sequences of commands best suited to
the situation.

The trees can be extremely deep, with nodes call-
ing sub-trees which perform particular functions,
allowing for the developer to create libraries of

1



behaviours that can be chained together to pro-
vide very convincing AI behaviour. Development
is highly iterable, where you can start by form-
ing a basic behaviour, then create new branches
to deal with alternate methods of achieving goals,
with branches ordered by their desirability, allow-
ing for the AI to have fallback tactics should a par-
ticular behaviour fail. This is where they really
shine.

3 Data Driven vs Code Driven

This distinction has little relevance to this guide,
however it should be noted that there are many dif-
ferent possible implementations of behaviour trees.
A main distinction is whether the trees are defined
externally to the codebase, perhaps in XML or a
proprietary format and manipulated with an exter-
nal editor, or whether the structure of the trees is
defined directly in code via nested class instances.

JBT uses a strange hybrid of these two, where an
editor is provided to allow you to visually construct
your behaviour tree, however an exporter command
line tool actually generates java code to represent
the behaviour trees in the code-base.

Whatever the implementation, the leaf nodes, the
nodes that actually do the game specific business
and control your character or check the character’s
situation or surroundings, are something you need
to define yourself in code. Be that in the native
language or using a scripting language such as Lua
or Python. These can then be leveraged by your
trees to provide complex behaviours. It is quite
how expressive these nodes can be, sometimes op-
erating more as a standard library to manipulate
data within the tree itself, than just simply char-
acter commands, that really make behaviour trees
exciting to me.

4 Tree Traversal

A core aspect of Behavior Trees is that unlike a
method within your codebase, a particular node or
branch in the tree may take many ticks of the game

to complete. In the basic implementation of be-
haviour trees, the system will traverse down from
the root of the tree every single frame, testing each
node down the tree to see which is active, recheck-
ing any nodes along the way, until it reaches the
currently active node to tick it again.

This isn’t a very efficient way to do things, espe-
cially when the behaviour tree gets deeper as its
developed and expanded during development. I’d
say its a must that any behaviour tree you imple-
ment should store any currently processing nodes
so they can be ticked directly within the behaviour
tree engine rather than per tick traversal of the en-
tire tree. Thankfully JBT fits into this category.

5 Flow

A behaviour tree is made up of several types of
nodes, however some core functionality is common
to any type of node in a behaviour tree. This is that
they can return one of three statuses. (Depending
on the implementation of the behaviour tree, there
may be more than three return statuses, however
I’ve yet to use one of these in practice and they are
not pertinent to any introduction to the subject)
The three common statuses are as follows:

Success Failure Running

The first two, as their names suggest, inform their
parent that their operation was a success or a fail-
ure. The third means that success or failure is
not yet determined, and the node is still running.
The node will be ticked again next time the tree is
ticked, at which point it will again have the oppor-
tunity to succeed, fail or continue running.

This functionality is key to the power of behaviour
trees, since it allows a node’s processing to persist
for many ticks of the game. For example a Walk
node would offer up the Running status during the
time it attempts to calculate a path, as well as the
time it takes the character to walk to the specified
location. If the pathfinding failed for whatever rea-
son, or some other complication arisen during the
walk to stop the character reaching the target loca-
tion, then the node returns failure to the parent. If
at any point the character’s current location equals

2



the target location, then it returns success indicat-
ing the Walk command executed successfully.

This means that this node in isolation has a cast
iron contract defined for success and failure, and
any tree utilizing this node can be assured of the
result it received from this node. These statuses
then propagate and define the flow of the tree, to
provide a sequence of events and different execution
paths down the tree to make sure the AI behaves
as desired.

With this shared functionality in common, there
are three main archetypes of behaviour tree node:

• Composite

• Decorator

• Leaf

5.1 Composite

A composite node is a node that can have one or
more children. They will process one or more of
these children in either a first to last sequence or
random order depending on the particular compos-
ite node in question, and at some stage will consider
their processing complete and pass either success or
failure to their parent, often determined by the suc-
cess or failure of the child nodes. During the time
they are processing children, they will continue to
return Running to the parent.

The most commonly used composite node is the
Sequence, which simply runs each child in sequence,
returning failure at the point any of the children
fail, and returning success if every child returned a
successful status.

5.2 Decorator

A decorator node, like a composite node, can have
a child node. Unlike a composite node, they can

specifically only have a single child. Their function
is either to transform the result they receive from
their child node’s status, to terminate the child, or
repeat processing of the child, depending on the
type of decorator node.

A commonly used example of a decorator is the
Inverter, which will simply invert the result of the
child. A child fails and it will return success to its
parent, or a child succeeds and it will return failure
to the parent.

5.3 Leaf

These are the lowest level node type, and are inca-
pable of having any children.

Leafs are however the most powerful of node types,
as these will be defined and implemented by your
game to do the game specific or character specific
tests or actions required to make your tree actually
do useful stuff.

An example of this, as used above, would be Walk.
A Walk leaf node would make a character walk to
a specific point on the map, and return success or
failure depending on the result.

Since you can define what leaf nodes are yourself
(often with very minimal code), they can be very
expressive when layered on top of composite and
decorators, and allow for you to make pretty pow-
erful behavior trees capable of quite complicated
layered and intelligently prioritized behaviour.

In an analogy of game code, think of composites
and decorators as functions, if statements and while
loops and other language constructs for defining
flow of your code, and leaf nodes as game specific
function calls that actually do the business for your
AI characters or test their state or situation.

These nodes can be defined with parameters. For
example the Walk leaf node may have a coordinate
for the character to walk to.

These parameters can be taken from variables
stored within the context of the AI character pro-
cessing the tree. So for example a location to
walk to could be determined by a ’GetSafeLoca-
tion’ node, stored in a variable, and then a ’Walk’
node could use that variable stored in the context to

3



define the destination. It’s through using a shared
context between nodes for storing and altering of
arbitrary persistent data during processing of a tree
that makes behaviour trees immensely powerful.

Another integral type of Leaf node is one that calls
another behaviour tree, passing the existing tree’s
data context through to the called tree.

These are key as they allow you to modularise the
trees heavily to create behaviour trees that can be
reused in countless places, perhaps using a specific
variable name within the context to operate on. For
example a ’Break into Building’ behaviour may ex-
pect a ’targetBuilding’ variable with which to op-
erate on, so parent trees can set this variable in the
context, then call the sub-tree via a sub-tree Leaf
node.

6 Composite Nodes

Here we will talk about the most common compos-
ite nodes found within behaviour trees. There are
others, but we will cover the basics that should see
you on your way to writing some pretty complex
behaviour trees in their own right.

6.1 Sequences

The simplest composite node found within be-
haviour trees, their name says it all. A sequence
will visit each child in order, starting with the first,
and when that succeeds will call the second, and so
on down the list of children. If any child fails it will
immediately return failure to the parent. If the last
child in the sequence succeeds, then the sequence
will return success to its parent.

It’s important to make clear that the node types in
behaviour trees have quite a wide range of applica-
tions. The most obvious usage of sequences is to
define a sequence of tasks that must be completed
in entirety, and where failure of one means further
processing of that sequence of tasks becomes redun-
dant. For example:

This sequence, as is probably clear, will make the
given character walk through a door, closing it be-
hind them. In truth, these nodes would likely be
more abstracted and use parameters in a produc-
tion environment. Walk (location), Open (open-
able), Walk (location), Close (openable)

The processing order is thus:

Sequence -¿ Walk to Door (success) -¿ Sequence
(running) -¿ Open Door (success) -¿ Sequence (run-
ning) -¿ Walk through Door (success) -¿ Sequence
(running) -¿ Close Door (success) -¿ Sequence (suc-
cess) -¿ at which point the sequence returns success
to its own parent.

If a character fails to walk to the door, perhaps
because the way is blocked, then it is no longer rel-
evant to try opening the door, or walking through
it. The sequence returns failure at the moment the
walk fails, and the parent of the sequence can then
deal with the failure gracefully.

The fact that sequences naturally lend themselves
to sequences of character actions, and since AI be-
haviour trees tend to suggest this is their only use,
it may not be clear that there are several different
ways to leverage sequences beyond making a char-
acter do a sequential list of ’things’. Consider this:

In the above example, we have not a list of actions
but a list of tests. The child nodes check if the char-
acter is hungry, if they have food on their person,
if they are in a safe location, and only if all of these
return success to the sequence parent, will the char-
acter then eat food. Using sequences like this allow
you to test one or more conditions before carrying
out an action. Analogous to if statements in code,
and to an AND gate in circuitry. Since all children
need to succeed, and those children could be any
combination of composite, decorator or leaf nodes,
it allows for pretty powerful conditional checking
within your AI brain.

Consider for example the Inverter decorator men-
tioned in the above section:

Functionally identical to the previous example,
here we show how you can use inverters to negate

4



any test and therefore give you a NOT gate. This
means you can drastically cut the amount of nodes
you will need for testing the conditions of your char-
acter or game world.

6.2 Selector

Selectors are the yin to the sequence’s yang. Where
a sequence is an AND, requiring all children to suc-
ceed to return a success, a selector will return a
success if any of its children succeed and not pro-
cess any further children. It will process the first
child, and if it fails will process the second, and
if that fails will process the third, until a success
is reached, at which point it will instantly return
success. It will fail if all children fail. This means
a selector is analagous with an OR gate, and as a
conditional statement can be used to check multiple
conditions to see if any one of them is true.

Their main power comes from their ability to repre-
sent multiple different courses of action, in order of
priority from most favorable to least favorable, and
to return success if it managed to succeed at any
course of action. The implications of this are huge,
and you can very quickly develop pretty sophisti-
cated AI behaviours through the use of selectors.

Let’s revisit our door sequence example from ear-
lier, adding a potential complication to it and a
selector to solve it.

Yes, here we can deal with locked doors intelli-
gently, with the use of only a handful of new nodes.

So what happens when this selector is processed?

First, it will process the Open Door node. The
most preferable cause of action is to simply open

the door. No messing. If that succeeds then the
selector succeeds, knowing it was a job well done.
There’s no further need to explore any other child
nodes of that selector.

If, however, the door fails to open because some
sod has locked it, then the open door node will fail,
passing failure to the parent selector. At this point
the selector will try the second node, or the second
preferable cause of action, which is to attempt to
unlock the door.

Here we’ve created another sequence (that must be
completed in entirety to pass success back to the
selector) where we first unlock the door, then at-
tempt to open it.

If either step of unlocking the door fails (perhaps
the AI doesn’t have the key, or the required lock-
picking skill, or perhaps they managed to pick the
lock, but found the door was nailed shut when at-
tempting to open it?) then it will return failure to
the selector, which will then try the third course of
action, smashing the door off its hinges!

If the character is not strong enough, then perhaps
this fails. In this case there are no more courses of
action left, and the the selector will fail, and this
will in turn cause the selector’s parent sequence to
fail, abandoning the attempt to walk through the
door.

To take this a step further, perhaps there is a se-
lector above that which will then choose another
course of action based on this sequence’s failure?

Here we’ve expanded the tree with a topmost se-
lector. On the left (most preferable side) we enter
through the door, and if that fails we instead try to
enter through the window. In truth the actual im-
plementation would likely not look this way and its
a bit of a simplification on what we did on Project
Zomboid, but it illustrates the point. We’ll get to
a more generic and usable implementation later.

In short, we have here an ‘Enter Building’ be-

5



haviour that you can rely on to either get inside
the building in question, or to inform its parent
that it failed to. Perhaps there are no windows? In
this case the topmost selector will fail, and perhaps
a parent selector will tell the AI to head to another
building?

A key factor in behaviour trees that has simplified
AI development a huge deal for myself over previ-
ous attempts is that failure is no longer a critical
full stop on whatever I’m trying to do (uhoh, the
pathfind failed, WHAT NOW?), but just a natural
and expected part of the decision making process
that fits naturally in the paradigm of the AI sys-
tem.

You can layer failsafes and alternate courses of ac-
tion for every possible situation. An example with
Project Zomboid would be the EnsureItemInInven-
tory behaviour.

This behaviour takes in an inventory item type, and
uses a selector to determine from several courses of
action to ensure an item is in the NPC’s inventory,
including recursive calls to the same behaviour with
different item parameters.

First it’ll check if the item is already in the charac-
ter’s main top level inventory. This is the ideal situ-
ation as nothing needs to be done. If it is, then the
selector succeeds and thus the entire behaviour suc-
ceeds. EnsureItemInInventory has succeeded, and
the item is there for use.

If the item is not in the character’s inventory, then
they will check the contents of any bags or back-
packs the character is carrying. If the item is found,
then they will transfer the item from the bag into
his top level inventory. This will then succeed, as
the success criteria is met.

If THIS fails, then a third branch of the selector will
determine of the item is located in the building the
character is currently residing in. If it is, then the
character will travel to the location of the container
holding the item and take it from the container.
Again the criteria is met, so success!

If THIS fails, then there is one more trick up the
NPCs sleeve. It will then iterate a list of crafting
recipes that result in the item they desire, and for
each of these recipes it will iterate through each in-
gredient item, and will recursively call the Ensure-

ItemInInventory behaviour for each of those items
in turn. If each of these succeeds, then we know for
a fact that the NPC now carries every ingredient
required to craft their desired item. The character
will then craft the item from those ingredients, be-
fore returning success as the criteria of having the
item is met.

If THIS fails, then the EnsureItemInInventory be-
haviour will fail, with no more fallbacks, and the
NPC will just add that item to a list of desired
items to look out for during looting missions and
live without the item.

The result of this is that the NPC is suddenly ca-
pable of crafting any item in the game they desire
if they have the ingredients required, or those in-
gredients can be obtained from the building.

Due to the recursive nature of the behaviour, if they
don’t have the ingredients themselves, then they
will even attempt to craft them from even baser
level ingredients, hunting the building if necessary,
crafting multiple stages of items to be able to craft
the item they actually need.

Suddenly we have a quite complicated and impres-
sive looking AI behaviour that actually boils down
to relatively simple nodes layered on top of each
other. The EnsureItemInInventory behaviour can
then be used liberally throughout many other trees,
whenever we need an NPC to ensure they have an
item in their inventory.

I’m sure at some point during development we’ll
continue this further with another fallback, and
allow the NPCs to actually go out specifically in
search of items they critically desire, choosing a
looting target that has the highest chance of con-
taining that item.

Another failsafe that could be higher in the priority
list may be to consider other items which may ac-
complish the same goal as the selected item. If one
day we finally code in support for makeshift tools,
then looking for less effective alternatives and ham-
mering a nail in with a rock may trump sneaking
across town into a zombie infested hardware store.

Due to the ease of extending the trees during de-
velopment, its easy to create a simple behaviour
that ’does the job’, and then iteratively improve
that NPC behaviour with extra branches via a se-

6



lector to cater for more solid failsafes and fallbacks
to reduce the likelihood of the behaviour failing.
The crafting fallback was added much later down
the line, and just goes to further equip NPCs with
behaviours to further aid them in achieving their
goals.

Furthermore if prioritized carefully, these fallbacks,
despite being essentially scripted behaviours, be-
stow the appearance of intelligent problem solving
and natural decision making to the AI character.

6.3 Random Selectors / Sequences

I’m not going to dwell on these, as their behaviour
will be obvious given the previous sections. Ran-
dom sequences/selectors work identically to their
namesakes, except the actual order the child nodes
are processed is determined randomly. These can
be used to add more unpredictability to an AI char-
acter in cases where there isn’t a clear preferable
order of execution of possible courses of action.

7 Decorator Nodes

7.1 Inverter

We’ve already covered this one. Simply put they
will invert or negate the result of their child node.
Success becomes failure, and failure becomes suc-
cess. They are most often used in conditional tests.

7.2 Succeeder

A succeeder will always return success, irrespective
of what the child node actually returned. These are
useful in cases where you want to process a branch
of a tree where a failure is expected or anticipated,
but you don’t want to abandon processing of a se-
quence that branch sits on. The opposite of this
type of node is not required, as an inverter will turn
a succeeder into a ‘failer’ if a failure is required for
the parent.

7.3 Repeater

A repeater will reprocess its child node each time
its child returns a result. These are often used at
the very base of the tree, to make the tree to run
continuously. Repeaters may optionally run their
children a set number of times before returning to
their parent.

7.4 Repeat Until Fail

Like a repeater, these decorators will continue to
reprocess their child. That is until the child finally
returns a failure, at which point the repeater will
return success to its parent.

8 Data Context

The specifics of this are down to the actual imple-
mentation of the behaviour tree, the programming
language used, and all manner of other things, so
we’ll keep this all rather abstract and conceptual.

When a behaviour tree is called on an AI entity, a
data context is also created which acts as a stor-
age for arbitrary variables that are interpreted and
altered by the nodes (using string/object pair in a
C# Dictionary or java HashMap, probably a C++
string/void* STL map, though its a long time since
I’ve used C++ so there are probably better ways
to handle this)

Nodes will be able to read or write into variables to
provide nodes processed later with contextual data
and allow the behaviour tree to act as a cohesive
unit. As soon as you start exploiting this heavily,
the flexibility and scope of behaviour trees becomes
very impressive, and the true power at your finger-
tips becomes apparent. We’ll get to this in a while
when we revisit our doors and windows behaviour.

9 Defining Leaf Nodes

Again, the specifics of this are down to the ac-
tual implementation of the behaviour tree. In or-
der to provide functionality to leaf nodes, to allow

7



for game specific functionality to be added into be-
haviour trees, most systems have two functions that
will need to be implemented.

init —Called the first time a node is visited by its
parent during its parents execution. For example a
sequence will call this when its the node’s turn to
be processed. It will not be called again until the
next time the parent node is fired after the parent
has finished processing and returned a result to its
parent. This function is used to initialise the node
and start the action the node represents. Using our
walk example, it will retrieve the parameters and
perhaps initiate the pathfinding job.

process —This is called every tick of the behaviour
tree while the node is processing. If this function
returns Success or Failure, then its processing will
end and the result passed to its parent. If it returns
Running it will be reprocessed next tick, and again
and again until it returns a Success or Failure. In
the Walk example, it will return Running until the
pathfinding either succeeds or fails.

Nodes can have properties associated with them,
that may be explicitly passed literal parameters, or
references to variables within the data context of
the AI entity being controlled.

I’m not going to go into the specifics of implemen-
tation, as this is not only language dependent but
also behaviour tree implementation dependent, but
the concept of parameters and storage of arbitrary
data within the behaviour tree instance are fairly
universal.

So for example, we may describe a Walk node as
such:

Walk (character, destination)

• success: Reached destination

• failure: Failed to reach destination

• running : En route

In this case Walk has two parameters, the charac-
ter and the destination. While it may seem natural
to always assume that the character who is run-
ning the AI behaviour is the subject of a node and
therefore would not need to be passed explicitly as

a parameter, it’s best not to make this assump-
tion, despite ‘Walk’ being a pretty safe bet. As too
many times, particularly on conditional nodes, I’ve
found myself having to recode nodes to cater for
testing another characters state or interacting with
them in some way. It’s always best to go the extra
mile and pass the character the command applies
to even if you’re fairly sure that only the AI running
the behaviour would require it.

The passed location, as stated earlier, could be in-
putted manually with X, Y, Z coordinates. But
more likely, the location would be stored in the con-
text as a variable by another node, obtaining the
location of some game object, or building, or per-
haps calculating a safe place in cover in the NPCs
vicinity.

10 Stacks

When first looking into behaviour trees, its natural
to constrain the scope of the nodes they use to char-
acter actions, or conditional tests about the charac-
ter or their environment. With this limitation it’s
sometimes difficult to see how powerful behaviour
trees are.

It’s when it occurred to me to implement stack op-
erations as nodes that their utility really became
apparent to me. So I added the following node im-
plementations to the game:

PushToStack(item, stackVar)

PopFromStack(stack, itemVar)

IsEmpty(stack)

That’s it, just these three nodes. All they needed
was init/process functions implemented to create
and modify a standard library stack object with
just a few lines of code, and they open up a whole
host of possibilities.

For example PushToStack creates a new stack if
one doesn’t exist, and stores it in the passed vari-
able name, and then pushes item object onto it.

Similarly pop pops an item off the stack, and stores
it in the itemVar variable, failing if the stack is
already empty, and IsEmpty checks if the stack
passed is empty and returns success if it is, and
failure if its not.

8



With these nodes, we now have the capacity to it-
erate through a stack of objects like this:

Using an Until Fail repeater, we can repeatedly pop
an item from the stack and operate on it, until the
point the stack is empty, at which point PopFrom-
Stack will return a fail and exit out of the Until
Fail repeater.

Next, a couple of other vital utility nodes that I use
regularly:

SetVariable(varName, object)

IsNull(object)

These allow us to set arbitrary variables through-
out the behaviour tree in circumstances where the
composites and decorators don’t allow us enough
granularity to get information up the tree we re-
quire. We’ll hit a situation like this in a moment,
though I don’t doubt there’s a way to organize it
so it’s not required.

Now supposing we added a node called
GetDoorStackFromBuilding, where you passed a
building object and it retrieved a list of exterior
door objects in that building, newing and filling
a Stack with the objects and setting the target
variable. What could we do then using the things
we’ve detailed above?

Eek. This has gotten a little more complicated, and
at first glance it may seem a bit difficult to ascertain
what’s going on, but like any language eventually
it becomes easier to read at a glance, and what you
lose in readability you gain in flexibility.

So what does this do? Well it may be a little bit
of a head mangler at first, but once you become
familiar with the way the nodes operate and how
the successes and failures transverse the tree, it be-
comes a lot easier to visualise. If necessary I may
expand this section to show the walk through the
tree, if my description proves insufficient.

In short, it is a behaviour that will retrieve and then
try to enter every single door into a building, and
return success if the character succeeded in getting
in any of the doors, and it will return failure if they
did not.

First up it grabs a stack containing every door-
way into the building. Then it calls the Until Fail
repeater node which will continue to reprocess its
child until its child returns a failure.

That child, a sequence, will first pop a door from
the stack, storing it in the door variable.

If the stack is empty because there are no doors,
then this node will fail and break out of the Until
Fail repeater with a success (Until Fail always suc-
ceeds), to continue the parent sequence, where we
have an inverted IsNull check on usedDoor. This
will fail if the usedDoor is null (which it will be,
since it never got chance to set that variable), and
this will cause the entire behaviour to fail.

If the stack does manage to grab a door, it then
calls another sequence (with an inverter) which will
attempt to walk to the door, open it and walk
through it.

If the NPC fails to get through the door by any
means available to him (the door is locked, and
the NPC is too weak to break it down), then the
selector will fail, and will return fail to the parent,
which is the Inverter, which inverts the failure into
a success, which means it doesn’t escape the Until
Fail repeater, which in turn repeats and freshly re-
calls its child sequence to pop the next door from
the stack and the NPC will try the next door.

9



If the NPC succeeds in getting through a door, then
it will set that door in the usedDoor variable, at
which point the sequence will return success. This
success will be inverted into a failure so we can
escape the Until Fail repeater.

In this circumstance, we then fail in the IsNull

check on usedDoor, since it’s not null. This is in-
verted into a success, which causes the entire be-
haviour to succeed. The parent knows the NPC
successfully found a door and got through it into
the building.

If it failed, the same process could be repeated
with a GetWindowStackFromBuilding node, to re-
peat the process with windows. Or with a little
stack manipulation with a few more nodes, perhaps
you could call GetDoorStackFromBuilding and
GetWindowStackFromBuilding immediately after
each other, and append the windows to the end of
the door stack, and process all of them in the same
Until Fail, assuming that Open, Unlock, Smash,
Close operated on a generic base of doors and win-
dows, or run-time type checked the object they
were operating on.

Finally, you may notice I’ve added a Succeeder dec-
orator parenting the close door node. This is be-
cause it occurred to me that if an NPC smashed
the door, they would no doubt fail to close it.

Without the succeeder this would cause the se-
quence to fail before the usedDoor variable was set
and move onto the next door. An alternate so-
lution would be for Close Door to be designed to
always succeed even if the door was smashed. How-
ever, we want to retain the ability to test success of
closing a door (for example using the node within
a ‘Secure Safehouse’ behaviour would deem a fail-
ure to close the door because it’s no longer on its
hinges as pretty pertinent to the situation!), so a
Succeeder can ensure that the failure is ignored if
that behaviour is required.

10


