Junos® OS

Chassis Cluster Feature Guide for SRX Series Devices
Table of Contents

About the Documentation ... xxi

Documentation and Release Notes xxi

Supported Platforms .. xxi

Using the Examples in This Manual xxi

 Merging a Full Example .. xxi

 Merging a Snippet ... xxi

Documentation Conventions .. xxi

Documentation Feedback .. xxv

Requesting Technical Support ... xxv

 Self-Help Online Tools and Resources xxv

 Opening a Case with JTAC .. xxvi

Part 1
Overview

Chapter 1
Introduction to Chassis Cluster 3

 Chassis Cluster Overview ... 3

 High Availability Using Chassis Clusters 3

 How High Availability Is Achieved by Chassis Cluster 3

 Chassis Cluster Active/Active and Active/Passive Modes 4

 Chassis Cluster Functionality ... 4

 IPv6 Clustering Support .. 5

 IPsec and Chassis Cluster .. 5

 Chassis Cluster Supported Features 5

 Chassis Cluster Supported Features (SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500) ... 6

 Chassis Cluster-Supported Features (SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500) ... 23

 Chassis Cluster Supported Features (SRX5800, SRX5600, and SRX5400) ... 26

 Chassis Cluster-Supported Features (SRX5800, SRX5600, and SRX5400) ... 48

 Chassis Cluster Limitations .. 50

Chapter 2
Understanding Chassis Cluster License Requirements 55

 Understanding Chassis Cluster Licensing Requirements 55

 Installing Licenses on the Devices in a Chassis Cluster 56

 Verifying Licenses for an SRX Series Device in a Chassis Cluster 58

Chapter 3
Planning Your Chassis Cluster Configuration 61

 Preparing Your Equipment for Chassis Cluster Formation 61

 SRX Series Chassis Cluster Configuration Overview 62
Part 2 Setting Up Chassis Cluster in SRX Series Devices

Chapter 4 Chassis Cluster Physical Setup .. 71
Connecting SRX Series Devices to Create a Chassis Cluster 71

Chapter 5 Setting Up Chassis Cluster Identification 79
Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming .. 79
Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500) .. 79
Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (SRX4100 and SRX4200) 82
Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (SRX5800, SRX5600, SRX5400) .. 83
FPC Slot Numbering in SRX Series Devices .. 84
SRX Series Services Gateways Interface Renumbering 85
FPC Slot Numbering in SRX Series Device Cards 86
Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (SRX3600, SRX3400, and SRX400) .. 87
Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (SRX650, SRX550, SRX240, SRX210, SRX110, and SRX100) .. 88
Example: Setting the Chassis Cluster Node ID and Cluster ID for SRX Series Devices .. 90

Chapter 6 Setting Up Chassis Cluster Management Interfaces 93
Management Interface on an Active Chassis Cluster 93
Example: Configuring the Chassis Cluster Management Interface 94

Chapter 7 Setting Up Fabric Interfaces on a Chassis Cluster 101
Understanding Chassis Cluster Fabric Interfaces 101
Supported Fabric Interface Types for SRX Series Devices (SRX300 Series, SRX550M, SRX1500, SRX4100/SRX4200, and SRX5000 Series) 102
Supported Fabric Interface Types for SRX Series Devices (SRX650, SRX550, SRX240, SRX210, and SRX100 Devices) .. 103
Jumbo Frame Support .. 103
Understanding Fabric Interfaces on SRX5000 Line Devices for IOC2 and IOC3 .. 103
Understanding Session RTOs ... 104
Understanding Data Forwarding .. 105
Understanding Fabric Data Link Failure and Recovery 105
Example: Configuring the Chassis Cluster Fabric Interfaces 107
Verifying Chassis Cluster Data Plane Interfaces 109
Verifying Chassis Cluster Data Plane Statistics 110
Clearing Chassis Cluster Data Plane Statistics 111
Table of Contents

Chapter 8 Setting Up Control Plane Interfaces on a Chassis Cluster .. 113
 Understanding Chassis Cluster Control Plane and Control Links .. 113
 Understanding Chassis Cluster Control Links ... 114
 Verifying Chassis Cluster Control Plane Statistics .. 115
 Clearing Chassis Cluster Control Plane Statistics ... 116
 Example: Configuring Chassis Cluster Control Ports ... 116

Chapter 9 Setting Up Chassis Cluster Redundancy Groups ... 119
 Understanding Chassis Cluster Redundancy Groups ... 119
 Understanding Chassis Cluster Redundancy Group 0: Routing Engines 120
 Understanding Chassis Cluster Redundancy Groups 1 Through 128 121
 Example: Configuring Chassis Cluster Redundancy Groups ... 123

Chapter 10 Setting Up Chassis Cluster Redundant Ethernet Interfaces 127
 Understanding Chassis Cluster Redundant Ethernet Interfaces .. 127
 Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses ... 131
 Example: Configuring the Number of Redundant Ethernet Interfaces in a Chassis Cluster ... 136

Chapter 11 Configuring Chassis Cluster .. 139
 Example: Configuring Chassis Clustering on an SRX Series Devices 139
 Example: Enabling Eight-Queue Class of Service on Redundant Ethernet Interfaces 152
 Verifying a Chassis Cluster Configuration ... 161
 Verifying Chassis Cluster Statistics .. 161
 Clearing Chassis Cluster Statistics ... 163

Part 3 Managing Chassis Cluster Operations

Chapter 12 Configuring Chassis Cluster Dual Control Links for Managing Control Traffic ... 167
 Understanding Chassis Cluster Dual Control Links .. 167
 Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster 168
 Example: Configuring Chassis Cluster Control Ports for Dual Control Links 169
 Upgrading the Second Routing Engine When Using Chassis Cluster Dual Control Links on SRX5600 and SRX5800 Devices .. 172

Chapter 13 Monitoring Chassis Cluster ... 175
 Understanding Chassis Cluster Redundancy Group Interface Monitoring 175
 Example: Configuring Chassis Cluster Interface Monitoring ... 176
 Understanding Chassis Cluster Redundancy Group IP Address Monitoring 205
 Example: Configuring Chassis Cluster Redundancy Group IP Address Monitoring 208
 Understanding Chassis Cluster Monitoring of Global-Level Objects 211
 Understanding SPU Monitoring ... 211
 Understanding flowd Monitoring ... 212
 Understanding Cold-Sync Monitoring ... 213
 Understanding Cold-Sync Monitoring with SPU Replacement or Expansion 213
 IP Monitoring Overview ... 214
Example: Configuring IP Monitoring on SRX5000 Line Devices for IOC2 and IOC3 ... 216

Chapter 14 Configuring Chassis Cluster Failover Parameters ... 225
Understanding Chassis Cluster Control Link Heartbeats, Failure, and Recovery .. 225
Understanding Chassis Cluster Control Link Heartbeats .. 225
Understanding Chassis Cluster Control Link Failure and Recovery ... 226
Example: Configuring Chassis Cluster Control Link Recovery ... 228

Chapter 15 Managing Chassis Cluster Redundancy Group Failover .. 231
Understanding Chassis Cluster Redundancy Group Failover .. 231
Example: Configuring a Chassis Cluster with a Dampening Time Between Back-to-Back Redundancy Group Failovers ... 232
Understanding Chassis Cluster Redundancy Group Manual Failover ... 233
Understanding SNMP Failover Traps for Chassis Cluster Redundancy Group Failover 235
Initiating a Chassis Cluster Manual Redundancy Group Failover .. 236
Verifying Chassis Cluster Failover Status .. 239
Clearing Chassis Cluster Failover Status ... 240

Chapter 16 Configuring Chassis Cluster Dual Fabric Links to Increase Redundancy and Performance ... 241
Understanding Chassis Cluster Dual Fabric Links .. 241
Example: Configuring the Chassis Cluster Dual Fabric Links with Matching Slots and Ports ... 242
Example: Configuring Chassis Cluster Dual Fabric Links with Different Slots and Ports ... 244

Chapter 17 Configuring Route Advertisement over Redundant Ethernet Interfaces in a Chassis Cluster ... 249
Understanding Conditional Route Advertising in a Chassis Cluster .. 249
Example: Configuring Conditional Route Advertising in a Chassis Cluster ... 250

Chapter 18 Configuring Redundant Ethernet LAG Interfaces for Increasing High Availability and Overall Throughput ... 255
Understanding Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups ... 255
Example: Configuring Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups ... 257
Understanding Chassis Cluster Redundant Ethernet Interface LAG Failover ... 261
Scenario 1: Monitored Interface Weight Is 255 .. 261
Scenario 2: Monitored Interface Weight Is 75 ... 262
Scenario 3: Monitored Interface Weight Is 100 .. 262
Understanding LACP on Chassis Clusters ... 263
Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups ... 263
Minimum Links ... 264
Sub-LAGs .. 264
Supporting Hitless Failover .. 265
Managing Link Aggregation Control PDUs .. 265
Example: Configuring LACP on Chassis Clusters .. 265
Chapter 19 Simplifying Chassis Cluster Management 275
Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes .. 275
Verifying Chassis Cluster Configuration Synchronization Status 276
NTP Time Synchronization on SRX Series Devices 277
Example: Simplifying Network Management by Synchronizing the Primary and Backup Nodes with NTP ... 278

Part 4 Additional Chassis Cluster Configurations
Chapter 20 Configuring Active/Passive Chassis Cluster Deployments 287
Understanding Active/Passive Chassis Cluster Deployment 287
Example: Configuring an Active/Passive Chassis Cluster Pair (CLI) 288
Example: Configuring an Active/Passive Chassis Cluster Pair (J-Web) 300
Example: Configuring an Active/Passive Chassis Cluster on SRX Series Services Gateways ... 302
Understanding Active/Passive Chassis Cluster Deployment with an IPsec Tunnel .. 317
Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel .. 318
Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel (J-Web) ... 334

Chapter 21 Enabling Multicast Routing or Asymmetric Routing 337
Understanding Multicast Routing on a Chassis Cluster 337
Understanding PIM Data Forwarding ... 338
Understanding Multicast and PIM Session Synchronization 338
Understanding Asymmetric Routing Chassis Cluster Deployment 338
Understanding Failures in the Trust Zone Redundant Ethernet Interface 339
Understanding Failures in the Untrust Zone Interfaces 339
Example: Configuring an Asymmetric Chassis Cluster Pair 340

Chapter 22 Configuring Chassis Cluster Layer 2 Ethernet Switching 353
Layer 2 Ethernet Switching Capability in a Chassis Cluster Mode 353
Understanding Layer 2 Ethernet Switching Capability in a Chassis Cluster on SRX Series Devices ... 353
Understanding Chassis Cluster Failover and New Primary Election 354
Example: Configuring Switch Fabric Interfaces to Enable Switching in Chassis Cluster Mode (CLI) .. 355
Example: Configuring IRB and VLAN with Members Across Two Nodes (CLI Procedure) ... 357

Chapter 23 Configuring Media Access Control Security (MACsec) 361
Understanding Media Access Control Security (MACsec) 361
How MACsec Works .. 361
Understanding Connectivity Associations and Secure Channels 362
Understanding Static Connectivity Association Key Security Mode 362
MACsec Considerations .. 363
Configuring Media Access Control Security (MACsec) 363
Configuring MACsec Using Static Connectivity Association Key Security Mode .. 365
Configuring Static CAK on the Chassis Cluster Control Port 370
Configuring Static CAK on the Chassis Cluster Fabric Port 371
Considerations for Configuring MACsec on Control Ports 371
Configuring MACsec on Control Ports 372
Considerations for Configuring MACsec on Fabric Ports 372

Part 5 Upgrading or Disabling Chassis Cluster

Chapter 24 Upgrading Both Devices Separately 375
Upgrading Individual Devices in a Chassis Cluster Separately 375

Chapter 25 Upgrading Both Devices Using ICU 377
Upgrading Devices in a Chassis Cluster Using ICU 377
Upgrading Both Devices in a Chassis Cluster Using ICU 377
Upgrading ICU Using a Build Available Locally on a Primary Node in a Chassis Cluster .. 378
Upgrading ICU Using a Build Available on an FTP Server 379
Aborting an Upgrade in a Chassis Cluster During an ICU 380

Chapter 26 Upgrading Both Devices Using Low-Impact ISSU 383
Understanding the ISSU Process on Devices in a Chassis Cluster .. 383
ISSU System Requirements .. 386
Upgrading Both Devices in a Chassis Cluster Using an ISSU 388
Rolling Back Devices in a Chassis Cluster After an ISSU 390
Enabling an Automatic Chassis Cluster Node Failback After an ISSU .. 391
Understanding Log Error Messages for Troubleshooting ISSU-Related Problems .. 391
Chassisd Process Errors .. 392
Kernel State Synchronization ... 392
Installation-Related Errors .. 392
ISSU Support-Related Errors ... 393
Redundancy Group Failover Errors 393
Initial Validation Checks Fail .. 393
Understanding Common Error Handling for ISSU 394
Troubleshooting Chassis Cluster ISSU-Related Problems 397
Viewing ISSU Progress .. 397
Stopping ISSU Process if it Halts During an Upgrade 398
Recovering the Node in Case of a Failed ISSU 398

Chapter 27 Disabling Chassis Cluster .. 401
Disabling Chassis Cluster .. 401

Part 6 Configuration Statements and Operational Commands

Chapter 28 Configuration Statements 405
apply-groups (Chassis Cluster) ... 407
arp-throttle ... 408
Table of Contents

cak ... 409
ckn .. 410
cluster (Chassis) .. 411
configuration-synchronize (Chassis Cluster) 413
connectivity-association 414
connectivity-association (MACsec Interfaces) 415
control-link-recovery ... 416
control-ports .. 417
device-count (Chassis Cluster) 418
exclude-protocol .. 419
ethernet (Chassis Cluster) 420
fabric-options .. 421
gigether-options (Chassis Cluster) 422
global-threshold .. 424
global-weight .. 425
 gratuitous-arp-count 426
heartbeat-interval .. 427
heartbeat-threshold .. 428
hold-down-interval .. 429
 include-sci .. 430
interface (Chassis Cluster) 431
interfaces (MACsec) .. 432
interface-monitor .. 433
internal (Security IPsec) 434
ip-monitoring .. 436
key-server-priority (MACsec) 437
lacp (Interfaces) .. 438
link-protection (Chassis Cluster) 439
macsec .. 440
member-interfaces .. 441
mka .. 442
must-secure .. 443
network-management ... 444
no-encryption (MACsec) 445
node (Chassis Cluster) .. 446
node (Chassis Cluster Redundancy Group) 447
ntp .. 448
ntp threshold .. 449
offset ... 451
preempt (Chassis Cluster) 452
pre-shared-key ... 453
priority (Chassis Cluster) 454
redundancy-group (Chassis Cluster) 455
redundancy-interface-process 457
redundant-ether-options 458
redundant-parent (Interfaces) 459
redundant-pseudo-interface-options 460
replay-protect ... 461
replay-window-size .. 462
Chapter 29 Operational Commands ..477

clear chassis cluster control-plane statistics479
clear chassis cluster data-plane statistics480
clear chassis cluster failover-count481
clear chassis cluster ip-monitoring failure-count483
clear chassis cluster ip-monitoring failure-count ip-address .484
clear chassis cluster statistics ..485
request chassis cb ..486
request chassis cluster configuration-synchronize487
request chassis cluster failover node488
request chassis cluster failover redundancy-group489
request chassis cluster failover reset491
request chassis fpc ..492
request chassis cluster in-service-upgrade abort (ISSU)493
request security internal-security-association refresh494
request system scripts add ..495
request system reboot ...498
request system software in-service-upgrade (Maintenance)499
request system software rollback (SRX Series)504
set chassis cluster cluster-id node node-number reboot505
show chassis cluster control-plane statistics506
show chassis cluster data-plane interfaces508
show chassis cluster data-plane statistics509
show chassis cluster ethernet-switching interfaces512
show chassis cluster ethernet-switching status513
show chassis cluster information515
show chassis cluster information configuration-synchronization 519
show chassis cluster information issu521
show chassis cluster interfaces523
show chassis cluster ip-monitoring status redundancy-group .528
show chassis cluster statistics531
show chassis cluster status535
show chassis environment (Security)538
show chassis environment cb542
show chassis ethernet-switch545
show chassis fabric plane ...549
show chassis fabric plane-location555
show chassis fabric summary557
show chassis hardware (View)560
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show chassis routing-engine (View)</td>
<td>571</td>
</tr>
<tr>
<td>show configuration chassis cluster traceoptions</td>
<td>574</td>
</tr>
<tr>
<td>set date ntp</td>
<td>575</td>
</tr>
<tr>
<td>show interfaces (Gigabit Ethernet)</td>
<td>577</td>
</tr>
<tr>
<td>show system ntp threshold</td>
<td>591</td>
</tr>
<tr>
<td>show security macsec connections</td>
<td>592</td>
</tr>
<tr>
<td>show security macsec statistics (SRX Series Devices)</td>
<td>594</td>
</tr>
<tr>
<td>show security mka statistics</td>
<td>598</td>
</tr>
<tr>
<td>show security mka sessions (SRX Series Device)</td>
<td>600</td>
</tr>
<tr>
<td>show security internal-security-association</td>
<td>602</td>
</tr>
<tr>
<td>show system license (View)</td>
<td>603</td>
</tr>
</tbody>
</table>
List of Figures

Part 1 Overview

Chapter 3 Planning Your Chassis Cluster Configuration ... 61
Figure 1: Chassis Cluster Flow Diagram (SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 Devices) ... 64
Figure 2: Chassis Cluster Flow Diagram (SRX5800, SRX5600, SRX5400 Devices) ... 64

Part 2 Setting Up Chassis Cluster in SRX Series Devices

Chapter 4 Chassis Cluster Physical Setup ... 71
Figure 3: Connecting SRX Series Devices in a Cluster (SRX300 Devices) 72
Figure 4: Connecting SRX Series Devices in a Cluster (SRX320 Devices) 72
Figure 5: Connecting SRX Series Devices in a Cluster (SRX340 Devices) 72
Figure 6: Connecting SRX Series Devices in a Cluster (SRX345 Devices) 72
Figure 7: Connecting SRX Series Devices in a Cluster (SRX550M Devices) 72
Figure 8: Connecting SRX Series Devices in a Cluster (SRX1500 Devices) 73
Figure 9: Connecting SRX Series Devices in a Cluster (SRX4100 Devices) 73
Figure 10: Connecting SRX Series Devices in a Cluster (SRX4200 Devices) 73
Figure 11: Connecting SRX Series Devices in a Cluster (SRX5800 Devices) 74
Figure 12: Connecting SRX Series Devices in a Cluster (SRX5600 Devices) 74
Figure 13: Connecting SRX Series Devices in a Cluster (SRX5400 Devices) 75
Figure 14: Connecting SRX Series Devices in a Cluster (SRX3600 Devices) 75
Figure 15: Connecting SRX Series Devices in a Cluster (SRX3400 Devices) 75
Figure 16: Connecting SRX Series Devices in a Cluster (SRX1400 Devices) 75
Figure 17: Connecting SRX Series Devices in a Cluster (SRX650 Devices) 76
Figure 18: Connecting SRX Series Devices in a Cluster (SRX550 Devices) 76
Figure 19: Connecting SRX Series Devices in a Cluster (SRX240 Devices) 76
Figure 20: Connecting SRX Series Devices in a Cluster (SRX220 Devices) 77
Figure 21: Connecting SRX Series Devices in a Cluster (SRX210 Devices) 77
Figure 22: Connecting SRX Series Devices in a Cluster (SRX110 Devices) 77
Figure 23: Connecting SRX Series Devices in a Cluster (SRX100 Devices) 77

Chapter 5 Setting Up Chassis Cluster Identification ... 79
Figure 24: Slot Numbering in SRX300 Chassis Cluster 81
Figure 25: Slot Numbering in SRX320 Chassis Cluster 82
Figure 26: Slot Numbering in SRX340 Chassis Cluster 82
Figure 27: Slot Numbering in SRX345 Chassis Cluster 82
Figure 28: Slot Numbering in SRX550M Chassis Cluster 82
Figure 29: Slot Numbering in SRX1500 Chassis Cluster 82
Figure 30: Slot Numbering in SRX5800 Chassis Cluster 85

Copyright © 2017, Juniper Networks, Inc.
Chapter 11 Configuring Chassis Cluster .. 139

Chapter 12 Configuring Chassis Cluster Dual Control Links for Managing Control Traffic ... 167

Chapter 13 Monitoring Chassis Cluster .. 175

Chapter 17 Configuring Route Advertisement over Redundant Ethernet Interfaces in a Chassis Cluster .. 249

Chapter 18 Configuring Redundant Ethernet LAG Interfaces for Increasing High Availability and Overall Throughput 255

Chapter 19 Simplifying Chassis Cluster Management 275

Part 4 Additional Chassis Cluster Configurations

Chapter 20 Configuring Active/Passive Chassis Cluster Deployments 287

Figure 31: Slot Numbering in SRX4100 Chassis Cluster 85
Figure 32: Slot Numbering in SRX4200 Chassis Cluster 85
Figure 33: Slot Numbering in an SRX Series Chassis Cluster (SRX3600 Devices) ... 88
Figure 34: Slot Numbering in an SRX Series Chassis Cluster (SRX1400 Devices) ... 88
Figure 35: Slot Numbering in SRX650 Chassis Cluster 89
Figure 36: Slot Numbering in SRX550 Chassis Cluster 89
Figure 37: Slot Numbering in SRX240 Chassis Cluster 89
Figure 38: Slot Numbering in SRX220 Chassis Cluster 89
Figure 39: Slot Numbering in SRX210 Chassis Cluster 89
Figure 40: Slot Numbering in SRX100 Chassis Cluster 89

Figure 41: SRX Series Devices (SRX1500) In Chassis Cluster 141
Figure 42: Eight-Queue CoS on Redundant Ethernet Interfaces 154

Figure 43: Connecting Dual Control Links (SRX5800 Devices) 169

Figure 44: SRX Series Chassis Cluster Interface Monitoring Topology Example ... 178

Figure 45: Conditional Route Advertising 250
Figure 46: Conditional Route Advertising on SRX Series Devices in a Chassis Cluster ... 252

Figure 47: Topology for LAGs Connecting SRX Series Devices in Chassis Cluster to an EX Series Switch 266

Figure 48: Synchronizing Time From Peer Node Through Control Link 279

Figure 49: Active/Passive Chassis Cluster Scenario 288
Figure 50: Active/Passive Chassis Cluster Topology 289
Figure 51: Basic Active/Passive Chassis Clustering on an SRX Series Device Topology Example ... 305

Figure 52: Active/Passive Chassis Cluster with IPsec Tunnel Scenario (SRX Series Devices) ... 318

Figure 53: Active/Passive Chassis Cluster with IPsec Tunnel Topology (SRX Series Devices) ... 320
<table>
<thead>
<tr>
<th>Chapter 21</th>
<th>Enabling Multicast Routing or Asymmetric Routing</th>
<th>337</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Figure 54: Asymmetric Routing Chassis Cluster Scenario</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>Figure 55: Asymmetric Routing Chassis Cluster Topology</td>
<td>341</td>
</tr>
<tr>
<td>Chapter 22</td>
<td>Configuring Chassis Cluster Layer 2 Ethernet Switching</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>Figure 56: Layer 2 Ethernet Switching Across Chassis Cluster Nodes</td>
<td>354</td>
</tr>
</tbody>
</table>
List of Tables

About the Documentation ..xxi
Table 1: Notice Icons ..xxiii
Table 2: Text and Syntax Conventionsxxiv

Part 1 Overview
Chapter 1 Introduction to Chassis Cluster3
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster6
Table 4: Chassis Cluster Feature Support on SRX Series Devices23
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster ...26
Table 6: Chassis Cluster Feature Support on SRX5800, SRX5600, and SRX5400 Devices ..48

Chapter 3 Planning Your Chassis Cluster Configuration61
Table 7: Slot Numbering Offsets67

Part 2 Setting Up Chassis Cluster in SRX Series Devices
Chapter 5 Setting Up Chassis Cluster Identification79
Table 8: SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming80
Table 9: SRX Series Chassis Cluster Slot Numbering, and Physical Port and Logical Interface Naming (SRX4100 and SRX4200 Devices)83
Table 10: SRX Series Chassis Cluster Slot Numbering, and Physical Port and Logical Interface Naming (SRX5000-Line Devices)84
Table 11: SRX Series Services Gateways Interface Renumbering86
Table 12: SRX Series Chassis Cluster Slot Numbering, and Physical Port and Logical Interface Naming87

Chapter 7 Setting Up Fabric Interfaces on a Chassis Cluster101
Table 13: Supported Fabric Interface Types for SRX Series Devices103

Chapter 9 Setting Up Chassis Cluster Redundancy Groups119
Table 14: Example of Redundancy Groups in a Chassis Cluster122

Chapter 10 Setting Up Chassis Cluster Redundant Ethernet Interfaces127
Table 15: Maximum Number of Redundant Ethernet Interfaces Allowed (SRX4100, SRX4200, SRX5400, SRX5600, SRX5800, SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500)128
Table 16: Maximum Number of Redundant Ethernet Interfaces Allowed (SRX100, SRX210, SRX220, SRX240, SRX550, and SRX650) 129

Chapter 11 Configuring Chassis Cluster .. 139
Table 17: SRX Series Services Gateways Interface Renumbering 141
Table 18: SRX Series Services Gateways Interface Settings 142
Table 19: SRX Series Services Gateways Interface Settings (SRX100, SRX210, SRX220, SRX240, SRX550) ... 143

Part 3 Managing Chassis Cluster Operations
Chapter 13 Monitoring Chassis Cluster .. 175
Table 20: IP Monitoring Results and Failover Action 215
Table 21: Maximum MACs Supported for IP Monitoring on IOC2 and IOC3 216

Part 4 Additional Chassis Cluster Configurations
Chapter 20 Configuring Active/Passive Chassis Cluster Deployments 287
Table 22: Group and Chassis Cluster Configuration Parameters 290
Table 23: Chassis Cluster Configuration Parameters 290
Table 24: Security Zone Configuration Parameters 291
Table 25: Security Policy Configuration Parameters 291
Table 26: Group and Chassis Cluster Configuration Parameters 320
Table 27: Chassis Cluster Configuration Parameters 320
Table 28: IKE Configuration Parameters .. 322
Table 29: IPsec Configuration Parameters .. 322
Table 30: Static Route Configuration Parameters 322
Table 31: Security Zone Configuration Parameters 323
Table 32: Security Policy Configuration Parameters 323

Chapter 21 Enabling Multicast Routing or Asymmetric Routing 337
Table 33: Group and Chassis Cluster Configuration Parameters 341
Table 34: Chassis Cluster Configuration Parameters 342
Table 35: Security Zone Configuration Parameters 342
Table 36: Security Policy Configuration Parameters 343

Part 5 Upgrading or Disabling Chassis Cluster
Chapter 25 Upgrading Both Devices Using ICU 377
Table 37: request system software in-service-upgrade Output Fields 381

Chapter 26 Upgrading Both Devices Using Low-Impact ISSU 383
Table 38: ISSU Platform Support ... 387
Table 39: ISSU-Related Errors and Solutions .. 395

Part 6 Configuration Statements and Operational Commands
Chapter 29 Operational Commands ... 477
Table 40: show chassis cluster control-plane statistics Output Fields 506
Table 41: show chassis cluster data-plane interfaces Output Fields 508
Table 42: show chassis cluster data-plane statistics Output Fields 510
Table 43: show chassis cluster ethernet-switching interfaces Output Fields . . . 512
Table 44: show chassis cluster ethernet-switching status Output Fields 513
Table 45: show chassis cluster information Output Fields 515
Table 46: show chassis cluster information configuration-synchronization Output
Fields . 519
Table 47: show chassis cluster information issu Output Fields 521
Table 48: show chassis cluster interfaces Output Fields 523
Table 49: show chassis cluster ip-monitoring status Output Fields 528
Table 50: show chassis cluster ip-monitoring status redundancy group Reason
Fields . 529
Table 51: show chassis cluster statistics Output Fields 531
Table 52: show chassis cluster status Output Fields 535
Table 53: show chassis environment Output Fields 538
Table 54: show chassis environment cb Output Fields 542
Table 55: show chassis ethernet-switch Output Fields 545
Table 56: show chassis fabric plane Output Fields 549
Table 57: show chassis fabric plane-location Output Fields 555
Table 58: show chassis fabric summary Output Fields 557
Table 59: show chassis hardware Output Fields 560
Table 60: show chassis routing-engine Output Fields 571
Table 61: show configuration chassis cluster traceoptions Output Fields 574
Table 62: show interfaces (Gigabit Ethernet) Output Fields 578
Table 63: Gigabit Ethernet IQ PIC Traffic and MAC Statistics by Interface
Type . 587
Table 64: show system ntp threshold Output Fields 591
Table 65: show security macsec connections Output Fields 592
Table 66: show security macsec statistics Output Fields 595
Table 67: show security mka statistics Output Fields 598
Table 68: show security mka sessions Output Fields 600
Table 69: show security internal-security-association Output Fields 602
Table 70: show system license Output Fields . 603
About the Documentation

• Documentation and Release Notes on page xxi
• Supported Platforms on page xxi
• Using the Examples in This Manual on page xxii
• Documentation Conventions on page xxiii
• Documentation Feedback on page xxv
• Requesting Technical Support on page xxv

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at http://www.juniper.net/techpubs/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at http://www.juniper.net/books.

Supported Platforms

For the features described in this document, the following platforms are supported:

• SRX Series
• vSRX

Using the Examples in This Manual

If you want to use the examples in this manual, you can use the load merge or the load merge relative command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a full example. In this case, use the load merge command.
If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the **load merge relative** command. These procedures are described in the following sections.

Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`. Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   system {
     scripts {
       commit {
         file ex-script.xsl;
       }
     }
   }
   interfaces {
     fxp0 {
       disable;
       unit 0 {
         family inet {
           address 10.0.0.1/24;
         }
       }
     }
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:

   ```
   [edit]
   user@host# load merge /var/tmp/ex-script.conf
   load complete
   ```

Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
     file ex-script-snippet.xsl; }
   ```
2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

```
[edit]
user@host# edit system scripts
[edit system scripts]
```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

```
[edit system scripts]
user@host# load merge relative /var/tmp/ex-script-snippet.conf
load complete
```

For more information about the `load` command, see CLI Explorer.

Documentation Conventions

Table 1 on page xxiii defines notice icons used in this guide.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td>![!]</td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td>![⚠️]</td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td>![💡]</td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td>![💡]</td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td>![💡]</td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page xxiv defines the text and syntax conventions used in this guide.
Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the configure command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>user@host> configure</td>
</tr>
<tr>
<td>Fixed-width text like this</td>
<td>Represents output that appears on the terminal screen.</td>
<td>user@host> show chassis alarms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No alarms currently active</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>• Introduces or emphasizes important new terms.</td>
<td>• A policy term is a named structure that defines match conditions and actions.</td>
</tr>
<tr>
<td></td>
<td>• Identifies guide names.</td>
<td>• Junos OS CLI User Guide</td>
</tr>
<tr>
<td></td>
<td>• Identifies RFC and Internet draft titles.</td>
<td>• RFC 1997, BGP Communities Attribute</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>Represents variables (options for which you substitute a value) in commands or configuration statements.</td>
<td>Configure the machine's domain name:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[edit]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>root@# set system domain-name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>domain-name</td>
</tr>
<tr>
<td>Text like this</td>
<td>Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components.</td>
<td>To configure a stub area, include the stub statement at the [edit protocols ospf area area-id] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The console port is labeled CONSOLE.</td>
</tr>
<tr>
<td>< > (angle brackets)</td>
<td>Encloses optional keywords or variables.</td>
<td>stub <default-metric metric>;</td>
</tr>
<tr>
<td></td>
<td>(pipe symbol)</td>
<td>Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity.</td>
</tr>
<tr>
<td></td>
<td>(string1</td>
<td>string2</td>
</tr>
<tr>
<td></td>
<td>(pound sign)</td>
<td>Indicates a comment specified on the same line as the configuration statement to which it applies.</td>
</tr>
<tr>
<td>[] (square brackets)</td>
<td>Encloses a variable for which you can substitute one or more values.</td>
<td>community name members [</td>
</tr>
<tr>
<td></td>
<td>(community-ids)</td>
<td></td>
</tr>
<tr>
<td>Indention and braces ({ })</td>
<td>Identifies a level in the configuration hierarchy.</td>
<td>[edit] routing-options {</td>
</tr>
<tr>
<td></td>
<td>static {</td>
<td></td>
</tr>
<tr>
<td></td>
<td>route default {</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nexthop address;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>retain;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td>: (semicolon)</td>
<td>Identifies a leaf statement at a configuration hierarchy level.</td>
<td></td>
</tr>
</tbody>
</table>

GUI Conventions
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
</table>
| **Bold text like this** | Represents graphical user interface (GUI) items you click or select. | • In the Logical Interfaces box, select **All Interfaces**.
• To cancel the configuration, click **Cancel**. |
| > (bold right angle bracket) | Separates levels in a hierarchy of menu selections. | In the configuration editor hierarchy, select **Protocols > Ospf**. |

Documentation Feedback

We encourage you to provide feedback, comments, and suggestions so that we can improve the documentation. You can provide feedback by using either of the following methods:

• Online feedback rating system—On any page of the Juniper Networks TechLibrary site at http://www.juniper.net/techpubs/index.html, simply click the stars to rate the content, and use the pop-up form to provide us with information about your experience. Alternately, you can use the online feedback form at http://www.juniper.net/techpubs/feedback/.

• E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active J-Care or Partner Support Service support contract, or are covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

• Product warranties—For product warranty information, visit http://www.juniper.net/support/warranty/.

• JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:
Find CSC offerings: http://www.juniper.net/customers/support/
Search for known bugs: http://www2.juniper.net/kb/
Find product documentation: http://www.juniper.net/techpubs/
Find solutions and answer questions using our Knowledge Base: http://kb.juniper.net/
Download the latest versions of software and review release notes: http://www.juniper.net/customers/csc/software/
Search technical bulletins for relevant hardware and software notifications: http://kb.juniper.net/InfoCenter/
Join and participate in the Juniper Networks Community Forum: http://www.juniper.net/company/communities/
Open a case online in the CSC Case Management tool: http://www.juniper.net/cm/

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://tools.juniper.net/SerialNumberEntitlementSearch/

Opening a Case with JTAC

You can open a case with JTAC on the Web or by telephone.

• Use the Case Management tool in the CSC at http://www.juniper.net/cm/.
• Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see http://www.juniper.net/support/requesting-support.html.
PART 1

Overview

• Introduction to Chassis Cluster on page 3
• Understanding Chassis Cluster License Requirements on page 55
• Planning Your Chassis Cluster Configuration on page 61
CHAPTER 1

Introduction to Chassis Cluster

- Chassis Cluster Overview on page 3
- Chassis Cluster Supported Features on page 5
- Chassis Cluster Limitations on page 50

Chassis Cluster Overview

Supported Platforms

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>SRX Series, vSRX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- High Availability Using Chassis Clusters on page 3
- How High Availability Is Achieved by Chassis Cluster on page 3
- Chassis Cluster Active/Active and Active/Passive Modes on page 4
- Chassis Cluster Functionality on page 4
- IPv6 Clustering Support on page 5
- IPsec and Chassis Cluster on page 5

High Availability Using Chassis Clusters

Modern networks require high availability. In order to accommodate this requirement, Juniper Networks SRX Series Services Gateways can be configured to operate in cluster mode, where a pair of devices can be connected together and configured to operate like a single node, providing device, interface, and service level redundancy.

When configured as a chassis cluster, the two nodes back up each other, with one node acting as the primary device and the other as the secondary device, ensuring stateful failover of processes and services in the event of system or hardware failure. If the primary device fails, the secondary device takes over processing of traffic.

How High Availability Is Achieved by Chassis Cluster

- The network node redundancy is achieved by grouping a pair of the same kind of supported SRX Series devices into a cluster.
- The devices must be running the same version of the Junos operating system (Junos OS).
- SRX Series devices must be the same model.
• All SPCs, network processing cards (NPCs), and input/output cards (IOCs) on applicable SRX Series devices must have the same slot placement and hardware revision.

• The control ports on the respective nodes are connected to form a control plane that synchronizes the configuration and kernel state to facilitate the high availability of interfaces and services.

• The data plane on the respective nodes is connected over the fabric ports to form a unified data plane. The fabric link allows for the management of cross-node flow processing and for the management of session redundancy.

Chassis Cluster Active/Active and Active/Passive Modes

A chassis cluster in active/active mode has transit traffic passing through both nodes of the cluster all of the time. Whereas a chassis cluster in active/passive mode only has transit traffic passing through the primary node while the backup node waits in hot standby.

The data plane software operates in active/active mode. In a chassis cluster, session information is updated as traffic traverses either device, and this information is transmitted between the nodes over the fabric link to guarantee that established sessions are not dropped when a failover occurs. In active/active mode, it is possible for traffic to ingress the cluster on one node and egress from the other node.

The control plane software operates in active or backup mode.

Chassis Cluster Functionality

Chassis cluster functionality includes:

• Resilient system architecture, with a single active control plane for the entire cluster and multiple Packet Forwarding Engines. This architecture presents a single device view of the cluster.

• Synchronization of configuration and dynamic runtime states between nodes within a cluster.

• Monitoring of physical interfaces, and failover if the failure parameters cross a configured threshold.

• Support for Generic Routing Encapsulation (GRE) tunnels used to route encapsulated IPv4/IPv6 traffic by means of an internal interface, gr-0/0/0. This interface is created by Junos OS at system bootup and is used only for processing GRE tunnels. See the Interfaces Feature Guide for Security Devices.

At any given instant, a cluster can be in one of the following states: hold, primary, secondary-hold, secondary, ineligible, and disabled. A state transition can be triggered because of any event, such as interface monitoring, SPU monitoring, failures, and manual failovers.
IPv6 Clustering Support

SRX Series devices running IP version 6 (IPv6) can be deployed in active/active (failover) chassis cluster configurations in addition to the existing support of active/passive (failover) chassis cluster configurations. An interface can be configured with an IPv4 address, IPv6 address, or both. Address book entries can include any combination of IPv4 addresses, IPv6 addresses, and Domain Name System (DNS) names.

IPsec and Chassis Cluster

On SRX5400, SRX5600, and SRX5400 devices have a chassis cluster control port that is used to connect two SRX Series devices to form a chassis cluster. To ensure secure login and to prevent attackers from gaining privileged access through this control port, an internal IPsec SA is installed. Besides using internal IPsec to secure RSH and RCP between the primary and backup Routing Engines, the internal IPsec SA is installed on all the Services Processing Units (SPUs). An attacker cannot access any of the RSH services without knowing the internal IPsec key.

The internal IPsec SA requires authorization for RSH on SPU and the Routing Engine. For telnet, authorization is only required for SPU since telnet for Routing Engine requires a password.

You set up the IPsec internal SA using the `security internal-security-association` CLI command. You can configure the `security internal-security-association` on a node and then enable it to activate secure login. The `security internal-security-association` CLI command does not need to be set up on each node. When you commit the configuration, both nodes are synchronized.

NOTE: The SA in this scenario is not the point-to-point security association, because it is used to communicate with any Routing Engine or SPU on the internal network. Only 3des-cbc encryption algorithm is supported.

When secure login is configured, the IPsec-based rlogin (for starting a terminal session on a remote host) and rcmd (remote command) commands are enforced so an attacker cannot gain privileged access or observe traffic that contains administrator commands and outputs.

Related Documentation
- Preparing Your Equipment for Chassis Cluster Formation on page 61
- Understanding Chassis Cluster Redundancy Groups on page 119
- Understanding Chassis Cluster Redundant Ethernet Interfaces on page 127

Chassis Cluster Supported Features

Supported Platforms
- SRX Series, vSRX
NOTE: To determine if a feature is supported by a specific platform or Junos OS release, refer Feature Explorer.

Chassis Cluster Supported Features (SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500)

Table 3 on page 6 lists the features that are supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 devices in a chassis cluster.

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Books and Address Sets</td>
<td>Address books</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Address sets</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Global address objects or sets</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Nested address groups</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Administrator Authentication Support</td>
<td>Local authentication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RADIUS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>TACACS+</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Alarms</td>
<td>Chassis alarms</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Interface alarms</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>System alarms</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application identification 1</td>
<td>Application identification—synchronizing in a chassis cluster</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Application firewall (AppFW)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Application QoS (AppQoS)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Application tracking (AppTrack)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Custom application signatures and signature groups</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Heuristics-based detection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IDP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Jumbo frames</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nested application identification</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Onbox application tracking statistics (AppTrack)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SSL proxy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Subscription license enforcement</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGs</td>
<td>DNS ALG</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DNS doctoring support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DNS, FTP, RTSP, and TFTP ALGs (Layer 2) with chassis clustering</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DSCP marking for SIP, H.323, MGCP, and SCCP ALGs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>FTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>H.323</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>H.323–Avaya H.323</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>MGCP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>PPTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RPC–MS RPC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RPC–Sun RPC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RSH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RTSP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SIP–NEC SIP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SIP–SCCP SIP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SQL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>TALK TFTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active/Active</td>
<td>Bad IP option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Block fragment traffic</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Attack Detection and Prevention (Screens)</td>
<td>FIN flag without ACK flag</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ICMP flood protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ICMP fragment protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP address spoof</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP address sweep</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP record route option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP security option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP stream option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP strict source route option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP timestamp option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Land attack protection land</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Large size ICMP packet protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Loose source route option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Ping of death attack protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Port scan</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Source IP-based session limit</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SYN-ACK-ACK proxy protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SYN and FIN flags</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SYN flood protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SYN fragment protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCP address sweep</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>TCP packet without flag</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Teardrop attack protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>UDP address sweep</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>UDP flood protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Unknown protocol</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>WinNuke attack protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chassis Management</td>
<td>Allow chassis management</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CX111 3G adapter support</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>IEEE 802.3af / 802.3at support</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Chassis cluster SPC insert</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Class of Service</td>
<td>Classifiers</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Code-point aliases (IEEE 802.1)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Egress interface shaping</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Forwarding classes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Ingress interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Policer schedulers (hierarchical schedulers)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Simple filters</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Transmission queues</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>DHCP client</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DHCP relay agent</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DHCP server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DHCP server address pools</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DHCP server static mapping</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DHCPv6(^2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Diagnostics Tools</td>
<td>CLI terminal</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>J-Flow version 5 and version B</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>J-Flow version 9</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

NOTE: Supported on SRX1500, SRX4100, and SRX4200 devices only.

	Flowd monitoring	Yes	Yes	Yes	Yes
	Ping host	Yes	Yes	Yes	Yes
	Ping MPLS	No	No	No	No
	Traceroute	Yes	Yes	Yes	Yes

Dynamic VPN

| Package dynamic VPN client\(^3\) | – | – | – | – | – |
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Interfaces</td>
<td>10/100/1000 MB Ethernet interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>10-Gigabit Ethernet Interface SFP+ slots</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>40/100-Gigabit Ethernet interface MPC slots Gigabit</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Ethernet, Copper (10-Mbps, 100-Mbps, or 1000-Mbps port)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Gigabit Ethernet interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Promiscuous mode on Ethernet interface</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ethernet Link Aggregation</td>
<td>LACP/LAG cross IOC (inter-IOC)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>LACP (port priority) Layer 3 Mode</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>LACP (port priority) Layer 2 Mode</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Layer 3 LAG on routed ports</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Static LAG (routing)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Static LAG (switching)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Switching mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>File Management</td>
<td>Deletion of backup software image</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Deletion of individual files</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Download of system files</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Encryption/decryption of configuration files</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Management of account files</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall Authentication</td>
<td>Firewall authentication on Layer 2 transparent authentication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>LDAP authentication server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Local authentication server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Pass-through authentication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RADIUS authentication server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SecurID authentication server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Web authentication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow-Based and Packet-Based Processing</td>
<td>Alarms and auditing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>End-to-end packet debugging</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Express Path support</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Flow-based processing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Host bound fragmented traffic</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Network processor bundling</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Packet-based processing</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Selective stateless packet-based services</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GPRS</td>
<td>GPRS (transparent mode and route mode)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTPv2</td>
<td>IMSI prefix and APN filtering</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Message-length filtering</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Message-rate limiting</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Message-type filtering</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Packet sanity check</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Policy-based inspection</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Restart GTPv2 path</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Sequence-number and GTP-U validation</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Stateful inspection</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Traffic logging</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Tunnel cleanup</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Category</td>
<td>Feature</td>
<td>Active/Backup</td>
<td>Active/Backup Failover</td>
<td>Active/Active</td>
<td>Active/Active Failover</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>IDP</td>
<td>Alarms and auditing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Cryptographic key handling</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>DSCP marking</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>IDP and application identification</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP and UAC coordinated threat control</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP class-of-service action</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>IDP inline tap mode</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>IDP logging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP monitoring and debugging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP policy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP security packet capture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP signature database</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP SSL inspection</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>IPS rule base</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Jumbo frames</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Performance and capacity tuning for IDP</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>SNMP MIB for IDP monitoring</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPsec</td>
<td>AH protocol</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Alarms and auditing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Antireplay (packet replay attack prevention)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Autokey management</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Dead peer detection (DPD)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Dynamic IPsec VPNs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>External Extended Authentication (XAuth) to a RADIUS server for remote access connections</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Group VPN with dynamic policies (server functionality)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IKEv1 and IKEv2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Manual key management</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Policy-based and route-based VPNs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Route-based VPN support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Tunnel mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>VPN monitoring (proprietary)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Virtual router</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPv6</td>
<td>IPv6 support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 Mode</td>
<td>B02.1x port-based network authentication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Flexible Ethernet services</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IRB interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>LLDP and LLDP-MED</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>MAC limit (port security)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Q-in-Q tunneling</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Spanning Tree Protocol</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>VLAN retagging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>VLANs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multicast VPN</td>
<td>Basic multicast features in C-instance</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Multicast VPN membership discovery with BGP</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>P2MP LSP support</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>P2MP OAM to P2MP LSP ping</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Reliable multicast VPN routing information exchange</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT</td>
<td>Destination IP address translation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Disabling source</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Interface source NAT pool port</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>NAT address pool utilization threshold status</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>NAT port randomization</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>NAT traversal (NAT-T) for site-to-site IPsec VPNs (IPv4)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Persistent NAT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Persistent NAT binding for wildcard ports</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Persistent NAT hairpinning</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Pool translation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Proxy ARP (IPv4)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Proxy NDP (IPv6)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Removal of persistent NAT query bindings</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Rule-based NAT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Rule translation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Source address and group address translation for multicast flows</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Source IP address translation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Static NAT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Operations and Troubleshooting Support</td>
<td>Event policies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Event scripts</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Operation scripts</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>XSLT commit scripts</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Packet Capture</td>
<td>Packet capture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Public Key Infrastructure</td>
<td>Automated certificate enrollment using SCEP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Automatic generation of self-signed certificates</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CRL update at user-specified interval</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Digital signature generation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Entrust, Microsoft, and Verisign certificate authorities (CAs)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IKE support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Manual installation of DER-encoded and PEM-encoded CRLs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote Device Access</td>
<td>Reverse Telnet</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RPM Probe</td>
<td>RPM probe</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Category</td>
<td>Feature</td>
<td>Active/Backup</td>
<td>Active/Backup Failover</td>
<td>Active/Active</td>
<td>Active/Active Failover</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Routing</td>
<td>BGP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>BGP extensions for IPv6</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Compressed Real-Time Transport Protocol (CRTP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Internet Group Management Protocol (IGMP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IPv4 options and broadcast Internet diagrams</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IPv6 routing, forwarding, global address configuration, and Internet Control Message Protocol (ICMP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IS-IS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Multiple virtual routers</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Neighbor Discovery Protocol (NDP) and Secure Neighbor Discovery Protocol (SEND)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>OSPF v2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>OSPF v3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RIP next generation (RIPvng)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RIP v1, v2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Static routing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Virtual Router Redundancy Protocol (VRRP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Secure Web Access</td>
<td>CAs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>HTTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>HTTPS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Security Policy</td>
<td>Security policy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Zones</td>
<td>Functional zone</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Security zone</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Session Logging</td>
<td>Acceleration of security and traffic logging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Aggressive session aging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Getting information about sessions</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Logging to a single server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Session logging with NAT information</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SMTP</td>
<td>SMTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SNMP</td>
<td>SNMP v1, v2, v3</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stateless Firewall Filters</td>
<td>Stateless firewall filters (ACLs)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>System Log Files</td>
<td>System log archival</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>System log configuration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Disabling system logs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Filtering system log messages</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Multiple system log servers (control plane logs)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Sending system log messages to a file</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Sending system log messages to a user terminal</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Viewing data plane logs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Viewing system log messages</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent Mode</td>
<td>Bridge domain and transparent mode</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Class of service</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>UTM</td>
<td>Antispam</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Antivirus–Express</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Antivirus–Full</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Antivirus–Sophos</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Content filtering</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Stateful active/active cluster mode</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Web filtering–Enhanced</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Web filtering–Juniper Networks local</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Web filtering–Surf-control</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Web filtering–Websense redirect</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Upgrading and Rebooting</td>
<td>Autorecovery</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Boot device configuration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Boot device recovery</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Chassis components control</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Chassis restart</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Dual-root partitioning</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ISSU</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WELF support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Features Supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Feature Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Interfaces</td>
<td>CLI</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>J-Web user interface</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Junos XML protocol</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Network and Security Manager</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Session and Resource Control (SRC) application</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

1. When the application ID is identified before session failover, the same action taken before the failover is effective after the failover. That is, the action is published to AppSecure service modules and takes place based on the application ID of the traffic. If the application is in the process of being identified before a failover, the application ID is not identified and the session information will be lost. The application identification process will be applied on new sessions created on new primary node.

2. DHCPv6 is supported on SRX Series devices running Junos OS Release 12.1 and later releases.

3. Package Dynamic VPN client is supported on SRX Series devices until Junos OS Release 12.3X48.

Chassis Cluster-Supported Features (SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500)

NOTE: To determine if a feature is supported by a specific platform or Junos OS release, refer Feature Explorer.

Table 4 on page 23 lists the chassis cluster features that are supported on SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 devices.

Table 4: Chassis Cluster Feature Support on SRX Series Devices

<table>
<thead>
<tr>
<th>Features</th>
<th>Supported on SRX Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active/backup Routing Engine group (RG0)</td>
<td>Yes</td>
</tr>
<tr>
<td>Active/active data redundancy groups (RGx)</td>
<td>Yes</td>
</tr>
<tr>
<td>Aggregate Interfaces (link aggregation)</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 4: Chassis Cluster Feature Support on SRX Series Devices (continued)

<table>
<thead>
<tr>
<th>Features</th>
<th>Supported on SRX Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autorecovery of fabric link</td>
<td>Yes</td>
</tr>
<tr>
<td>Chassis cluster extended cluster ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Chassis cluster formation</td>
<td>Yes</td>
</tr>
<tr>
<td>Encrypted control link</td>
<td>No</td>
</tr>
<tr>
<td>Chassis clusters (active/backup and active/active)</td>
<td>Yes</td>
</tr>
<tr>
<td>Control link recovery</td>
<td>No</td>
</tr>
<tr>
<td>Control plane failover</td>
<td>Yes</td>
</tr>
<tr>
<td>Dampening time between back-to-back redundancy group failovers</td>
<td>Yes</td>
</tr>
<tr>
<td>Data plane failover</td>
<td>Yes</td>
</tr>
<tr>
<td>Dual control links (redundant link for failover)</td>
<td>No</td>
</tr>
<tr>
<td>Dual fabric links</td>
<td>Yes</td>
</tr>
<tr>
<td>IP monitoring</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow forwarding</td>
<td>Yes</td>
</tr>
<tr>
<td>Graceful restart routing protocols</td>
<td>Yes</td>
</tr>
<tr>
<td>Graceful protocol restart for BGP</td>
<td>Yes</td>
</tr>
<tr>
<td>Graceful protocol restart for IS-IS</td>
<td>Yes</td>
</tr>
<tr>
<td>Graceful protocol restart for OSPF</td>
<td>Yes</td>
</tr>
<tr>
<td>Graceful Routing Engine switchover (GRES) (between nodes)</td>
<td>Yes</td>
</tr>
<tr>
<td>HA fabric forwarded packet reordering Interface</td>
<td>Yes</td>
</tr>
<tr>
<td>HA monitoring</td>
<td>Yes</td>
</tr>
<tr>
<td>In-band cluster upgrade (ICU)</td>
<td>Yes</td>
</tr>
<tr>
<td>Junos OS flow-based routing functionality</td>
<td>Yes</td>
</tr>
<tr>
<td>LACP support for Layer 3</td>
<td>Yes</td>
</tr>
<tr>
<td>Layer 2 Ethernet switching capability</td>
<td>Yes</td>
</tr>
<tr>
<td>Features</td>
<td>Supported on SRX Series</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Layer 2 transparent mode LAG</td>
<td>Yes</td>
</tr>
<tr>
<td>Layer 3 LAG</td>
<td>Yes</td>
</tr>
<tr>
<td>Local interface support (non-reth)</td>
<td>Yes</td>
</tr>
<tr>
<td>In-service software upgrade (ISSU)</td>
<td>No</td>
</tr>
<tr>
<td>Multicast in HA mode</td>
<td>Yes</td>
</tr>
<tr>
<td>Network Time Protocol (NTP) time synchronization in chassis cluster</td>
<td>Yes</td>
</tr>
<tr>
<td>Point-to-Point Protocol over Ethernet (PPPoE) over redundant Ethernet interface</td>
<td>Yes</td>
</tr>
<tr>
<td>Quality of service (QoS)</td>
<td>SRX550M</td>
</tr>
<tr>
<td>Redundancy group 0 (backup for Routing Engine)</td>
<td>Yes</td>
</tr>
<tr>
<td>Redundancy groups 1 through 128</td>
<td>Yes</td>
</tr>
<tr>
<td>Redundant Ethernet interfaces</td>
<td>Yes</td>
</tr>
<tr>
<td>Redundant Ethernet or aggregate Ethernet interface monitoring</td>
<td>Yes</td>
</tr>
<tr>
<td>Redundant Ethernet interfaces</td>
<td>Yes</td>
</tr>
<tr>
<td>SPU monitoring</td>
<td>No</td>
</tr>
<tr>
<td>Synchronization—backup node configuration from primary node</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronization—configuration</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronization—Dynamic Routing Protocol (DRP)</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronization—policies</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronization—session state sync (RTO sync)</td>
<td>Yes</td>
</tr>
<tr>
<td>TCP support for DNS</td>
<td>Yes</td>
</tr>
<tr>
<td>Upstream device IP address monitoring on a backup interface</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtual Router Redundancy Protocol (VRRP) version 3</td>
<td>No</td>
</tr>
<tr>
<td>WAN interfaces</td>
<td>No</td>
</tr>
</tbody>
</table>
Chassis Cluster Supported Features (SRX5800, SRX5600, and SRX5400)

To determine if a feature is supported by a specific platform or Junos OS release, refer to Feature Explorer.

Table 5 on page 26 lists the features that are supported on SRX5800, SRX5600, and SRX5400 devices in a chassis cluster.

Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Books and Address Sets</td>
<td>Address books</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Address sets</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Global address objects or sets</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Nested address groups</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Administrator Authentication Support</td>
<td>Local authentication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RADIUS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>TACACS+</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Alarms</td>
<td>Chassis alarms</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Interface alarms</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>System alarms</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Identification</td>
<td>Application identification—synchronizing in a chassis cluster</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Application firewall (AppFW)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Application QoS (AppQoS)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Application tracking (AppTrack)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Custom application signatures and signature groups</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Heuristics-based detection</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IDP</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Jumbo frames</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nested application identification</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Onbox application tracking statistics (AppTrack)</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SSL proxy</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Subscription license enforcement</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGs</td>
<td>DNS ALG</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DNS doctoring support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DNS, FTP, RTSP, and TFTP ALGs (Layer 2) with chassis clustering</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DSCP marking for SIP, H.323, MGCP, and SCCP ALGs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>FTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>H.323</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>H.323–Avaya H.323</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>MGCP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>PPTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RPC–MS RPC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RPC–Sun RPC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RSH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RTSP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SIP–NEC SIP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SIP–SCCP SIP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SQL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>TALK TFTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attack Detection and Prevention (Screens)</td>
<td>Bad IP option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Block fragment traffic</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>FIN flag without ACK flag</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ICMP flood protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ICMP fragment protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP address spoof</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP address sweep</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP record route option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP security option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP stream option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP strict source route option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IP timestamp option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Land attack protection land</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Large size ICMP packet protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Loose source route option</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Ping of death attack protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Port scan</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Source IP-based session limit</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SYN-ACK-ACK proxy protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SYN and FIN flags</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SYN flood protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SYN fragment protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>TCP address sweep</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>TCP packet without flag</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Teardrop attack protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>UDP address sweep</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>UDP flood protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Unknown protocol</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>WinNuke attack protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chassis Management</td>
<td>Allow chassis management</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CX111 3G adapter support</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>IEEE 802.3af / 802.3at support</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Chassis cluster SPC insert</td>
<td>Not supported for SRX5000 line</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class of Service</td>
<td>Classifiers</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Code-point aliases (IEEE 802.1)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Egress interface shaping</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Forwarding classes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Ingress interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Policer schedulers (hierarchical schedulers)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Simple filters</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Transmission queues</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DHCP</td>
<td>DHCP client</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DHCP relay agent</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DHCP server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DHCP server address pools</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DHCP server static mapping</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DHCPv6²</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics Tools</td>
<td>CLI terminal</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>J-Flow version 5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>J-Flow version 9</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>J-flow monitoring</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Ping host</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Ping MPLS</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Traceroute</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic VPN</td>
<td>Package dynamic VPN client</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ethernet Interfaces</td>
<td>10/100/1000 MB Ethernet interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>10-Gigabit Ethernet Interface SFP+ slots</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>40/100-Gigabit Ethernet interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Ethernet, Copper (10-Mbps, 100-Mbps, or 1000-Mbps port)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Gigabit Ethernet interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Promiscuous mode on Ethernet interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Link Aggregation</td>
<td>LACP/LAG cross IOC (inter-IOC)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>LACP (port priority) Layer 3 Mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>LACP (port priority) Layer 2 Mode</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Layer 3 LAG on routed ports</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Static LAG (routing)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Static LAG (switching)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Switching mode</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>File Management</td>
<td>Deletion of backup software image</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Deletion of individual files</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Download of system files</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Encryption and decryption of configuration files</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall Authentication</td>
<td>Firewall authentication on Layer 2 transparent authentication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>LDAP authentication server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Local authentication server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Pass-through authentication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RADIUS authentication server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SecurID authentication server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Web authentication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow-Based and Packet-Based Processing</td>
<td>Alarms and auditing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>End-to-end packet debugging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Express Path</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Flow-based processing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Host bound fragmented traffic</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Network processor bundling</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Packet-based processing</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Selective stateless packet-based services</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>GPRS</td>
<td>GPRS (transparent mode and route mode)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTPv2</td>
<td>IMSI prefix and APN filtering</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Message-length filtering</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Message-rate limiting</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Message-type filtering</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Packet sanity check</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Policy-based inspection</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Restart GTPv2 path</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Sequence-number and GTP-U validation</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Stateful inspection</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Traffic logging</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Tunnel cleanup</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDP</td>
<td>Alarms and auditing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Cryptographic key handling</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DSCP marking</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP and application identification</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP and UAC coordinated threat control</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP class-of-service action</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP inline tap mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP logging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP monitoring and debugging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP policy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP security packet capture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP signature database</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IDP SSL inspection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IPS rule base</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Jumbo frames</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Performance and capacity tuning for IDP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SNMP MIB for IDP monitoring</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPsec^3</td>
<td>AH protocol</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Alarms and auditing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Antireplay (packet replay attack prevention)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Autokey management</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Dead peer detection (DPD)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Dynamic IPsec VPNs</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>External Extended Authentication (XAuth) to a RADIUS server for remote access connections</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Group VPN with dynamic policies (server functionality)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IKEv1 and IKEv2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Manual key management</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Policy-based and route-based VPNs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Route-based VPN support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Tunnel mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>VPN monitoring (proprietary)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Virtual router</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6</td>
<td>IPv6 support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Layer 2 Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>802.1x port-based network authentication</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Flexible Ethernet services</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>IRB Interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>LLDP and LLDP-MED</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>MAC limit (port security)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Q-in-Q tunneling</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Spanning Tree Protocol</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>VLAN retagging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>VLANs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multicast VPN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic multicast features in C-instance</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Multicast VPN membership discovery with BGP</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>P2MP LSP support</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>P2MP OAM to P2MP LSP ping</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Reliable multicast VPN routing information exchange</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Category</td>
<td>Feature</td>
<td>Active/Backup</td>
<td>Active/Backup Failover</td>
<td>Active/Active</td>
<td>Active/Active Failover</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>NAT</td>
<td>Destination IP address translation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Disabling source</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Interface source NAT pool port</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>NAT address pool utilization threshold status</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>NAT port randomization</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>NAT traversal (NAT-T) for site-to-site IPsec VPNs (IPv4)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Persistent NAT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Persistent NAT binding for wildcard ports</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Persistent NAT hairpinning</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Pool translation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Proxy ARP (IPv4)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Proxy NDP (IPv6)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Removal of persistent NAT query bindings</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Rule-based NAT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Rule translation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Source address and group address translation for multicast flows</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP address translation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Static NAT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Network Operations and Troubleshooting Support</td>
<td>Event policies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Event scripts</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Operation scripts</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>XSLT commit scripts</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Packet Capture</td>
<td>Packet capture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Automated certificate enrollment using SCEP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Automatic generation of self-signed certificates</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CRL update at user-specified interval</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Digital signature generation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Entrust, Microsoft, and Verisign certificate authorities (CAs)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IKE support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Manual installation of DER-encoded and PEM-encoded CRLs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote Device Access</td>
<td>Reverse Telnet</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM Probe</td>
<td>RPM probe</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing</td>
<td>BGP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>BGP extensions for IPv6</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Compressed Real-Time Transport Protocol (CRTP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Internet Group Management Protocol (IGMP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IPv4 options and broadcast Internet diagrams</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IPv6 routing, forwarding, global address</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>configuration, and Internet Control Message</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol (ICMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IS-IS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Multiple virtual routers</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Neighbor Discovery Protocol (NDP) and Secure</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Neighbor Discovery Protocol (SEND)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OSPF v2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>OSPF v3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RIP next generation (RIPng)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RIP v1, v2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Static routing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virtual Router Redundancy Protocol (VRRP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Secure Web Access</td>
<td>CAs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>HTTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>HTTPS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Security Policy</td>
<td>Security policy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Security Zones</td>
<td>Functional zone</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Security zone</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Session Logging</td>
<td>Acceleration of security and traffic logging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Aggressive session aging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Getting information about sessions</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Logging to a single server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Session logging with NAT information</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SMTP</td>
<td>SMTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SNMP</td>
<td>SNMP v1, v2, v3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Stateless Firewall Filters</td>
<td>Stateless firewall filters (ACLs)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Log Files</td>
<td>System log archival</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>System log configuration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Disabling system logs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Filtering system log messages</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Multiple system log servers (control plane logs)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Sending system log messages to a file</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Sending system log messages to a user terminal</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Viewing data plane logs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Viewing system log messages</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Transparent Mode</td>
<td>Bridge domain and transparent mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Class of service</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTM</td>
<td>Antispam</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Antivirus–Express</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Antivirus–Full</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Antivirus–Sophos</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Content filtering</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Stateful active/active cluster mode</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Web filtering–Enhanced</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Web filtering–Juniper Networks local</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Web filtering–Surf-control</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Web filtering–Websense redirect</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 5: Features Supported on SRX5800, SRX5600, and SRX5400 Devices in a Chassis Cluster (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
<th>Active/Backup</th>
<th>Active/Backup Failover</th>
<th>Active/Active</th>
<th>Active/Active Failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrading and Rebooting</td>
<td>Autorecovery</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Boot device configuration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Boot device recovery</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Chassis components control</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Chassis restart</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Dual-root partitioning</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>ISSU</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>WELF support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>User Interfaces</td>
<td>CLI</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>J-Web user interface</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Junos XML protocol</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Network and Security Manager</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Session and Resource Control (SRC) application</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

1. When the application ID is identified before session failover, the same action taken before the failover is effective after the failover. That is, the action is published to AppSecure service modules and takes place based on the application ID of the traffic. If the application is in the process of being identified before a failover, the application ID is not identified and the session information is lost. The application identification process will be applied on new sessions created on new primary node.

2. DHCPv6 is supported on SRX Series devices running Junos OS Release 12.1 and later releases.
IPsec in active/active chassis cluster on SRX5000 line devices has the limitation that Z-mode traffic is not supported. This limitation pertains to Junos OS Release 12.3X48 and later and must be avoided.

Chassis Cluster-Supported Features (SRX5800, SRX5600, and SRX5400)

To determine if a feature is supported by a specific platform or Junos OS release, refer Feature Explorer.

Table 6 on page 48 lists the chassis cluster features that are supported on SRX5800, SRX5600, and SRX5400 devices.

Table 6: Chassis Cluster Feature Support on SRX5800, SRX5600, and SRX5400 Devices

<table>
<thead>
<tr>
<th>Features</th>
<th>SRX5000 Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active/backup Routing Engine group (RG0)</td>
<td>Yes</td>
</tr>
<tr>
<td>Active/active data redundancy groups (RGx)</td>
<td>Yes</td>
</tr>
<tr>
<td>Aggregate Interfaces (link aggregation)</td>
<td>Yes</td>
</tr>
<tr>
<td>Autorecovery of fabric link</td>
<td>Yes</td>
</tr>
<tr>
<td>Chassis cluster extended cluster ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Chassis cluster formation</td>
<td>Yes</td>
</tr>
<tr>
<td>Encrypted control link</td>
<td>Yes</td>
</tr>
<tr>
<td>Chassis clusters (active/backup and active/active)</td>
<td>Yes</td>
</tr>
<tr>
<td>Control link recovery</td>
<td>Yes</td>
</tr>
<tr>
<td>Control plane failover</td>
<td>Yes</td>
</tr>
<tr>
<td>Dampening time between back-to-back redundancy group failovers</td>
<td>Yes</td>
</tr>
<tr>
<td>Data plane failover</td>
<td>Yes</td>
</tr>
<tr>
<td>Dual control links (redundant link for failover)</td>
<td>Yes</td>
</tr>
<tr>
<td>Dual fabric links</td>
<td>Yes</td>
</tr>
<tr>
<td>IP monitoring</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow forwarding</td>
<td>Yes</td>
</tr>
<tr>
<td>Graceful restart routing protocols</td>
<td>Yes</td>
</tr>
<tr>
<td>Graceful protocol restart for BGP</td>
<td>Yes</td>
</tr>
<tr>
<td>Features</td>
<td>SRX5000 Line</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Graceful protocol restart for IS-IS</td>
<td>Yes</td>
</tr>
<tr>
<td>Graceful protocol restart for OSPF</td>
<td>Yes</td>
</tr>
<tr>
<td>Graceful Routing Engine switchover (GRES) (between nodes)</td>
<td>Yes</td>
</tr>
<tr>
<td>HA fabric forwarded packet reordering Interface</td>
<td>Yes</td>
</tr>
<tr>
<td>HA monitoring</td>
<td>Yes</td>
</tr>
<tr>
<td>In-band cluster upgrade (ICU)</td>
<td>No</td>
</tr>
<tr>
<td>Junos OS flow-based routing functionality</td>
<td>Yes</td>
</tr>
<tr>
<td>LACP support for Layer 3</td>
<td>Yes</td>
</tr>
<tr>
<td>Layer 2 Ethernet switching capability</td>
<td>No</td>
</tr>
<tr>
<td>Layer 2 transparent mode LAG</td>
<td>Yes</td>
</tr>
<tr>
<td>Layer 3 LAG</td>
<td>Yes</td>
</tr>
<tr>
<td>Local interface support (non-reth)</td>
<td>Yes</td>
</tr>
<tr>
<td>In-service Software Upgrade (ISSU)</td>
<td>Yes</td>
</tr>
<tr>
<td>Multicast in HA mode</td>
<td>Yes</td>
</tr>
<tr>
<td>Network Time Protocol (NTP) time synchronization</td>
<td>Yes</td>
</tr>
<tr>
<td>Point-to-Point Protocol over Ethernet (PPPoE) over redundant Ethernet interface</td>
<td>No</td>
</tr>
<tr>
<td>Quality of service (QoS)</td>
<td>Yes</td>
</tr>
<tr>
<td>Redundancy group 0 (backup for Routing Engine)</td>
<td>Yes</td>
</tr>
<tr>
<td>Redundancy groups 1 through 128</td>
<td>Yes</td>
</tr>
<tr>
<td>Redundant Ethernet interfaces</td>
<td>Yes</td>
</tr>
<tr>
<td>Redundant Ethernet or aggregate Ethernet interface monitoring</td>
<td>Yes</td>
</tr>
<tr>
<td>SPU monitoring</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronization—backup node configuration from primary node</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 6: Chassis Cluster Feature Support on SRX5800, SRX5600, and SRX5400 Devices (continued)

<table>
<thead>
<tr>
<th>Features</th>
<th>SRX5000 Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronization—configuration</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronization—Dynamic Routing Protocol (DRP)</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronization—policies</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronization—session state sync (RTO sync)</td>
<td>Yes</td>
</tr>
<tr>
<td>TCP support for DNS</td>
<td>Yes</td>
</tr>
<tr>
<td>Upstream device IP address monitoring on a backup interface</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtual Router Redundancy Protocol (VRRP) version 3</td>
<td>No</td>
</tr>
<tr>
<td>WAN interfaces</td>
<td>No</td>
</tr>
</tbody>
</table>

Related Documentation

- Chassis Cluster Overview on page 3
- Chassis Cluster Limitations on page 50

Chassis Cluster Limitations

Supported Platforms: SRX Series, vSRX

The SRX Series devices have the following chassis cluster limitations:

Chassis Cluster

- Group VPN is not supported.
- VRRP is not supported.
- On all SRX Series devices in a chassis cluster, flow monitoring for version 5 and version 8 is supported. However, flow monitoring for version 9 is not supported.
- When an SRX Series device is operating in chassis cluster mode and encounter any IA-chip access issue in an SPC or a I/O Card (IOC), a minor FPC alarm is activated to trigger redundancy group failover.
- On SRX5400, SRX5600, and SRX5800 devices, screen statistics data can be gathered on the primary device only.
- On SRX5400, SRX5600, and SRX5800 devices, in large chassis cluster configurations, you need to increase the wait time before triggering failover. In a full-capacity implementation, we recommend increasing the wait to 8 seconds by modifying heartbeat-threshold and heartbeat-interval values in the [edit chassis cluster] hierarchy.
The product of the **heartbeat-threshold** and **heartbeat-interval** values defines the time before failover. The default values (**heartbeat-threshold** of 3 beats and **heartbeat-interval** of 1000 milliseconds) produce a wait time of 3 seconds.

To change the wait time, modify the option values so that the product equals the desired setting. For example, setting the **heartbeat-threshold** to 8 and maintaining the default value for the **heartbeat-interval** (1000 milliseconds) yields a wait time of 8 seconds. Likewise, setting the **heartbeat-threshold** to 4 and the **heartbeat-interval** to 2000 milliseconds also yields a wait time of 8 seconds.

- On SRX5400, SRX5600, and SRX5800 devices, eight-queue configurations are not reflected on the chassis cluster interface.

Flow and Processing

- If you use packet capture on reth interfaces, two files are created, one for ingress packets and the other for egress packets based on the reth interface name. These files can be merged outside of the device using tools such as Wireshark or Mergecap.

- If you use port mirroring on reth interfaces, the reth interface cannot be configured as the output interface. You must use a physical interface as the output interface. If you configure the reth interface as an output interface using the `set forwarding-options port-mirroring family inet output` command, the following error message is displayed.

 Port-mirroring configuration error.

 Interface type in reth1.0 is not valid for port-mirroring or next-hop-group config

- Any packet-based services such as MPLS and CLNS are not supported.

- On all SRX Series devices, the packet-based forwarding for MPLS and ISO protocol families is not supported.

- On SRX Series devices in a chassis cluster, when two logical systems are configured, the scaling limit crosses 13,000, which is very close to the standard scaling limit of 15,000, and a convergence time of 5 minutes results. This issue occurs because multicast route learning takes more time when the number of routes is increased.

- On SRX5400, SRX5600, and SRX5800 devices in a chassis cluster, if the primary node running the LACP process (lacpd) undergoes a graceful or ungraceful restart, the lacpd on the new primary node might take a few seconds to start or reset interfaces and state machines to recover unexpected synchronous results. Also, during failover, when the system is processing traffic packets or internal high-priority packets (deleting
sessions or reestablishing tasks), medium-priority LACP packets from the peer (switch) are pushed off in the waiting queues, causing further delay.

NOTE: Flowd monitoring is supported on SRX100, SRX210, SRX20, SRX240, SRX550M, SRX650, SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 devices.

Installation and Upgrade

- For SRX300, SRX320, SRX340, SRX345, and SRX550M devices, the `reboot` parameter is not available, because the devices in a cluster are automatically rebooted following an in-band cluster upgrade (ICU).

Interfaces

- On the lsq-0/0/0 interface, Link services MLPPP, MLFR, and CRTP are not supported.
- On the lt-0/0/0 interface, CoS for RPM is not supported.
- The 3G dialer interface is not supported.
- Queuing on the ae interface is not supported.

Layer 2 Switching

- On SRX Series device failover, access points on the Layer 2 switch reboot and all wireless clients lose connectivity for 4 to 6 minutes.

MIBs

- The Chassis Cluster MIB is not supported.

Monitoring

- The maximum number of monitoring IPs that can be configured per cluster is 64 for SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 devices.
- On SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 devices, logs cannot be sent to NSM when logging is configured in the stream mode. Logs cannot be sent because the security log does not support configuration of the source IP address for the fxp0 interface and the security log destination in stream mode cannot be routed through the fxp0 interface. This implies that you cannot configure the security log server in the same subnet as the fxp0 interface and route the log server through the fxp0 interface.
IPv6

- Redundancy group IP address monitoring is not supported for IPv6 destinations.

GPRS

- On SRX5400, SRX5600, and SRX5800 devices, an APN or an IMSI filter must be limited to 600 for each GTP profile. The number of filters is directly proportional to the number of IMSI prefix entries. For example, if one APN is configured with two IMSI prefix entries, then the number of filters is two.

MIBs

- The Chassis Cluster MIB is not supported.

Starting with Junos OS Release 12.1X45-D10 and later, sampling features such as flow monitoring, packet capture, and port mirroring are supported on reth interfaces.

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1X45</td>
<td>Starting with Junos OS Release 12.1X45-D10 and later, sampling features such as flow monitoring, packet capture, and port mirroring are supported on reth interfaces.</td>
</tr>
</tbody>
</table>

Related Documentation

- Preparing Your Equipment for Chassis Cluster Formation on page 61
Understanding Chassis Cluster License Requirements

Some Junos OS software features require a license to activate the feature. To enable a licensed feature, you need to purchase, install, manage, and verify a license key that corresponds to each licensed feature.

There is no separate license required for chassis cluster. However, to configure and use the licensed feature in a chassis cluster setup, you must purchase one license per feature per device and the license needs to be installed on both nodes of the chassis cluster. Each license is tied to one software feature pack, and that license is valid for only one device.

For chassis cluster, you must install licenses that are unique to each device and cannot be shared between the devices. Both devices (which are going to form a chassis cluster) must have the valid, identical features licenses installed on them. If both devices do not have an identical set of licenses, then after a failover, a particular feature (that is, a feature that is not licensed on both devices) might not work or the configuration might not synchronize in chassis cluster formation.

Licensing is usually ordered when the device is purchased, and this information is bound to the chassis serial number. For example, Intrusion Detection and Prevention (IDP) is a licensed feature and the license for this specific feature is tied to the serial number of the device.

For information about how to purchase software licenses, contact your Juniper Networks sales representative at http://www.juniper.net/in/en/contact-us/.
Installing Licenses on the Devices in a Chassis Cluster

Supported Platforms
SRX Series, vSRX

You can add a license key from a file or a URL, from a terminal, or from the J-Web user interface. Use the `filename` option to activate a perpetual license directly on the device. Use the `url` option to send a subscription-based license key entitlement (such as unified threat management [UTM]) to the Juniper Networks licensing server for authorization. If authorized, the server downloads the license to the device and activates it.

Before adding new licenses, complete the following tasks:

- Purchase the required licenses.
- Set the chassis cluster node ID and the cluster ID. See "Example: Setting the Chassis Cluster Node ID and Cluster ID for SRX Series Devices" on page 90.
- Ensure that your SRX Series device has a connection to the Internet (if particular feature requires Internet or if (automatic) renewal of license through internet is to be used). For instructions on establishing basic connectivity, see the Getting Started Guide or Quick Start Guide for your device.

To install licenses on the primary node of an SRX Series device in a chassis cluster:

1. Run the `show chassis cluster status` command and identify which node is primary for redundancy group 0 on your SRX Series device.

   ```
   [primary:node0]
   user@host> show chassis cluster status redundancy-group 0
   ```

 Output to this command indicates that node 0 is primary and node 1 is secondary.

2. From CLI operational mode, enter one of the following CLI commands:

 - To add a license key from a file or a URL, enter the following command, specifying the filename or the URL where the key is located:

     ```
     user@host> request system license add filename | url
     ```

 - To add a license key from the terminal, enter the following command:

     ```
     user@host> request system license add terminal
     ```

3. When prompted, enter the license key, separating multiple license keys with a blank line.
If the license key you enter is invalid, an error appears in the CLI output when you press Ctrl+d to exit license entry mode.

4. Verify the installed licenses.

For more details, see Adding New Licenses (CLI Procedure).

To install licenses on the secondary node of an SRX Series device in a chassis cluster:

1. Initiate a failover to change node 1 (secondary node) to be the primary node:

 {primary:node0}

 user@host> request chassis cluster failover redundancy-group 0 node 1
 -
 Initiated manual failover for redundancy group 0

 NOTE: Initiating a failover to the secondary node is not required if you are installing licenses manually on the device. However, if you are installing the license directly from the Internet, you must initiate a failover.

2. Repeat the steps described in “Step-by-Step Procedure” on page 56 to install licenses on the secondary node.

3. Reboot the device for licenses to take effect.

 NOTE: You must install the updated license on both nodes of the chassis cluster before the existing license expires.

 NOTE: In a chassis cluster configuration, when one device has a license installed, and the other device does not have the same license installed, an error message is displayed when you try to configure that specific feature as shown in the following example:

 [edit security utm feature-profile web-filtering type]
 'type juniper-enhanced'
 warning: requires 'wf_key_websense_ewf' license
 <<<<<<<<<<<<<<<<<<<<<<<<
 configuration check succeeds

 TIP: If you are not using any specific feature or license, you can delete the license from both devices in a chassis cluster. You need to connect to each
node separately to delete the licenses. For details, see Example: Deleting a License Key.

Related Documentation
- Verifying Licenses for an SRX Series Device in a Chassis Cluster on page 58
- Understanding Chassis Cluster Licensing Requirements on page 55

Verifying Licenses for an SRX Series Device in a Chassis Cluster

Supported Platforms SRX Series, vSRX

Purpose You can verify the licenses installed on both the devices in a chassis cluster setup by using the `show system license installed` command to view license usage.
Action

Licenses details on node 0.

```
user@host> show system license installed
{primary:node0}
user@host> show system license
License usage:

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Licenses used</th>
<th>Licenses installed</th>
<th>Licenses needed</th>
<th>Expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>logical-system</td>
<td>1</td>
<td>26</td>
<td>0</td>
<td>permanent</td>
</tr>
<tr>
<td>services-offload</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>permanent</td>
</tr>
</tbody>
</table>

Licenses installed:
License identifier: JUNOS363684
License version: 2
Valid for device: JN111A654AGB
Features:
services-offload - services offload mode
permanent

License identifier: JUNOS531744
License version: 4
Valid for device: JN111A654AGB
Features:
services-offload - services offload mode
permanent

License identifier: JUNOS558173
License version: 4
Valid for device: JN111A654AGB
Features:
logical-system-25 - Logical System Capacity
permanent
```

Licenses details on node 1.

```
{secondary-hold:node1}
user@host> show system license
License usage:

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Licenses used</th>
<th>Licenses installed</th>
<th>Licenses needed</th>
<th>Expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>idp-sig</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>permanent</td>
</tr>
<tr>
<td>logical-system</td>
<td>1</td>
<td>26</td>
<td>0</td>
<td>permanent</td>
</tr>
<tr>
<td>services-offload</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>permanent</td>
</tr>
</tbody>
</table>

Licenses installed:
License identifier: JUNOS209661
License version: 2
Valid for device: JN111AB4DAGB
Features:
idp-sig - IDP Signature
permanent

License identifier: JUNOS336648
License version: 2
Valid for device: JN111AB4DAGB
Features:
logical-system-25 - Logical System Capacity
permanent
```
License identifier: JUNOS363685
License version: 2
Valid for device: JN111AB4DAGB
Features:
 services-offload - services offload mode
 permanent

License identifier: JUNOS531745
License version: 4
Valid for device: JN111AB4DAGB
Features:
 services-offload - services offload mode
 permanent

Meaning Use the fields **License version** and **Features** to make sure that licenses installed on both the nodes are identical.

Related Documentation

- Installing Licenses on the Devices in a Chassis Cluster on page 56
- Understanding Chassis Cluster Licensing Requirements on page 55
CHAPTER 3

Planning Your Chassis Cluster Configuration

- Preparing Your Equipment for Chassis Cluster Formation on page 61
- SRX Series Chassis Cluster Configuration Overview on page 62

Preparing Your Equipment for Chassis Cluster Formation

Supported Platforms
SRX Series, vSRX

To form a chassis cluster, a pair of the same kind of supported SRX Series devices is combined to act as a single system that enforces the same overall security.

The following are the device-specific matches required to form a chassis cluster:

- **Device-specific requirements:**

 The following are the device-specific matches required to form a chassis cluster:

 - SRX5400, SRX5600, and SRX5800—The placement and type of Services Processing Cards (SPCs) must match in the two clusters.
 - SRX3400 and SRX3600—The placement and type of SPCs, I/O cards (IOCs), and Network Processing Cards (NPCs) must match in the two devices.
 - SRX1500—Has dedicated slots for each kind of card that cannot be interchanged.
 - SRX300, SRX320, SRX340, SRX345, and SRX550M: Although the devices must be of the same type, they can contain different Physical Interface Modules (PIMs).

To form a chassis cluster, a pair of the same kind of supported SRX Series devices is combined to act as a single system that enforces the same overall security. SRX Series devices must meet the following requirements:

- **Junos OS requirements:** Both the devices must be running the same Junos OS version

- **Licensing requirements:** Licenses are unique to each device and cannot be shared between the devices. Both devices (which are going to form chassis cluster) must have the identical features and license keys enabled or installed them. If both devices do not have an identical set of licenses, then after a failover, that particular licensed feature might not work or the configuration might not synchronize in chassis cluster formation.
When a device joins a cluster, it becomes a node of that cluster. With the exception of unique node settings and management IP addresses, nodes in a cluster share the same configuration.

- A cluster is identified by a *cluster ID (cluster-id)* specified as a number from 1 through 255. Setting a cluster ID to 0 is equivalent to disabling a cluster. A cluster ID greater than 15 can only be set when the fabric and control link interfaces are connected back-to-back.

 The following message is displayed when you try to set a cluster ID greater than 15, and when fabric and control link interfaces are not connected back-to-back or are not connected on separated private VLANs:

  ```
  {primary:node1}
  user@host> set chassis cluster cluster-id 254 node 1 reboot
  ```

 For cluster-ids greater than 15 and when deploying more than one cluster in a single Layer 2 BROADCAST domain, it is mandatory that fabric and control links are either connected back-to-back or are connected on separate private VLANs.

- A cluster node is identified by a *node ID (node)* specified as a number from 0 through 1.

 NOTE: For SRX210 Services Gateways, the base and enhanced versions of a model can be used to form a cluster. For example:

 - SRX210B and SRX210BE
 - SRX210H and SRX210HE

 However, the following combinations cannot be used to form a cluster:

 - SRX210B and SRX210H
 - SRX210B and SRX210HE
 - SRX210BE and SRX210H
 - SRX210BE and SRX210HE

Related Documentation
- Chassis Cluster Overview on page 3
- Understanding Chassis Cluster Fabric Interfaces on page 101

SRX Series Chassis Cluster Configuration Overview

Supported Platforms SRX Series, vSRX

Note the following prerequisites for configuring a chassis cluster:

- On SRX300, SRX320, SRX340, SRX345, and SRX550M, any existing configurations associated with interfaces that transform to the fpx0 management port and the control
port should be removed. For more information, see “Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming” on page 79.

• Confirm that hardware and software are the same on both devices.
• Confirm that license keys are the same on both devices.

NOTE: For SRX300, SRX320, SRX340, SRX345, and SRX550M chassis clusters, the placement and type of GPIMs, XGPIMs, XPIMs, and Mini-PIMs (as applicable) must match in the two devices.

NOTE: For SRX5000 line chassis clusters, the placement and type of SPCs must match in the two devices.
Figure 1 on page 64 shows a chassis cluster flow diagram for SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 devices.

Figure 1: Chassis Cluster Flow Diagram (SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 Devices)

Figure 2: Chassis Cluster Flow Diagram (SRX5800, SRX5600, SRX5400 Devices)
Chapter 3: Planning Your Chassis Cluster Configuration

Diagram:

Start

Device A/Node 0
- Physically connect fabric and control links between Device A and Device B
- Connect to Device A console port
- Configure control ports (Applicable only to SRX3000e line of devices)
- Configure cluster ID and node ID
- Reboot Device A

Device B/Node 1
- Connect to Device B console port
- Configure control ports (Applicable only to SRX3000e line of devices)
- Configure cluster ID and node ID
- Reboot Device B

The two nodes will operate as one device

Configure fabric interfaces

Set up hostnames and management IP addresses

Configure redundancy groups

Configure reth interfaces

Verify and commit

End
This section provides an overview of the basic steps to create an SRX Series chassis cluster. To create an SRX Series chassis cluster:

1. Physically connect a pair of the same kind of supported SRX Series devices together. For more information, see “Connecting SRX Series Devices to Create a Chassis Cluster” on page 71.
 a. Create the fabric link between two nodes in a cluster by connecting any pair of Ethernet interfaces. For most SRX Series devices, the only requirement is that both interfaces be Gigabit Ethernet interfaces (or 10-Gigabit Ethernet interfaces). For SRX300, SRX320, SRX340, SRX345, and SRX550M devices, connect a pair of Gigabit Ethernet interfaces. For SRX1500 devices, fabric child must be of a similar type.
 When using dual fabric link functionality, connect the two pairs of Ethernet interfaces that you will use on each device. See “Understanding Chassis Cluster Dual Fabric Links” on page 241.
 b. Configure the control ports (SRX5000 line only). See “Example: Configuring Chassis Cluster Control Ports” on page 116.

2. Connect the first device to be initialized in the cluster to the console port. This is the node that forms the cluster. For connection instructions, see the Getting Started Guide for your device.

3. Use CLI operational mode commands to enable clustering:
 a. Identify the cluster by giving it the cluster ID.
 b. Identify the node by giving it its own node ID and then reboot the system.
 See “Example: Setting the Chassis Cluster Node ID and Cluster ID for SRX Series Devices” on page 90.

4. Connect to the console port on the other device and use CLI operational mode commands to enable clustering:
 a. Identify the cluster that the device is joining by setting the same cluster ID you set on the first node.
 b. Identify the node by giving it its own node ID and then reboot the system.

5. Configure the management interfaces on the cluster. See “Example: Configuring the Chassis Cluster Management Interface” on page 94.

6. Configure the cluster with the CLI. See:
 a. Example: Configuring the Number of Redundant Ethernet Interfaces in a Chassis Cluster on page 136
 b. Example: Configuring the Chassis Cluster Fabric Interfaces on page 107
 c. Example: Configuring Chassis Cluster Redundancy Groups on page 123

8. Configure conditional route advertisement over redundant Ethernet interfaces. See “Understanding Conditional Route Advertising in a Chassis Cluster” on page 249.

NOTE:

- **Fabric Links:**
 When using dual fabric link functionality, connect the two pairs of Ethernet interfaces that you will use on each device. See “Understanding Chassis Cluster Dual Fabric Links” on page 241.

- **Control Port:**
 When using dual control link functionality (SRX5600 and SRX5800 devices only), connect the two pairs of control ports that you will use on each device.

 See “Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster” on page 168.

 For SRX5600 and SRX5800 devices, control ports must be on corresponding slots in the two devices. Table 7 on page 67 shows the slot numbering offsets:

<table>
<thead>
<tr>
<th>Device</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX5800</td>
<td>12 (for example, fpc3 and fpc15)</td>
</tr>
<tr>
<td>SRX5600</td>
<td>6 (for example, fpc3 and fpc9)</td>
</tr>
<tr>
<td>SRX5400</td>
<td>3 (for example, fpc3 and fpc6)</td>
</tr>
</tbody>
</table>

SRX3400, and SRX3600 devices, the control ports are dedicated Gigabit Ethernet ports.

Related Documentation

- Connecting SRX Series Devices to Create a Chassis Cluster on page 71
• Example: Setting the Chassis Cluster Node ID and Cluster ID for SRX Series Devices on page 90
• Example: Configuring the Chassis Cluster Management Interface on page 94
• Example: Configuring the Number of Redundant Ethernet Interfaces in a Chassis Cluster on page 136
• Verifying a Chassis Cluster Configuration on page 161
PART 2

Setting Up Chassis Cluster in SRX Series Devices

- Chassis Cluster Physical Setup on page 71
- Setting Up Chassis Cluster Identification on page 79
- Setting Up Chassis Cluster Management Interfaces on page 93
- Setting Up Fabric Interfaces on a Chassis Cluster on page 101
- Setting Up Control Plane Interfaces on a Chassis Cluster on page 113
- Setting Up Chassis Cluster Redundancy Groups on page 119
- Setting Up Chassis Cluster Redundant Ethernet Interfaces on page 127
- Configuring Chassis Cluster on page 139
Connect SRX Series Devices to Create a Chassis Cluster

Supported Platforms

SRX Series

An SRX Series chassis cluster is created by physically connecting two identical cluster-supported SRX Series devices together using a pair of the same type of Ethernet connections. The connection is made for both a control link and a fabric (data) link between the two devices.

Control links in a chassis cluster are made using specific ports.

You must use the following ports to form the control link on the following SRX Series devices:

- For SRX300 devices, connect the ge-0/0/1 on node 0 to the ge-1/0/1 on node 1.
- For SRX320 devices, connect the ge-0/0/1 on node 0 to the ge-3/0/1 on node 1.
- For SRX340 and SRX345 devices, connect the ge-0/0/1 on node 0 to the ge-5/0/1 on node 1.
- For SRX550M devices, connect the ge-0/0/1 on node 0 to the ge-9/0/1 on node 1.
- SRX1500 devices use dedicated control ports.

To establish a fabric link:

- For SRX300 and SRX320 devices, connect any interface except ge-0/0/0 and ge-0/0/1.
- For SRX340 and SRX345 devices, connect any interface except fpx0 and ge-0/0/1.

Figure 3 on page 72, Figure 4 on page 72, Figure 5 on page 72, Figure 6 on page 72, Figure 7 on page 72, and Figure 8 on page 73 show pairs of SRX Series devices with the fabric links and control links connected.
Figure 3: Connecting SRX Series Devices in a Cluster (SRX300 Devices)

Figure 4: Connecting SRX Series Devices in a Cluster (SRX320 Devices)

Figure 5: Connecting SRX Series Devices in a Cluster (SRX340 Devices)

Figure 6: Connecting SRX Series Devices in a Cluster (SRX345 Devices)

Figure 7: Connecting SRX Series Devices in a Cluster (SRX550M Devices)
For a device from the SRX1500, the connection that serves as the control link must be between the built-in control ports on each device.

NOTE: You can connect two control links (SRX1400 Services Gateways and SRX5000 and SRX3000 lines only) and two fabric links between the two devices in the cluster to reduce the chance of control link and fabric link failure. See “Understanding Chassis Cluster Dual Control Links” on page 167 and “Understanding Chassis Cluster Dual Fabric Links” on page 241.

Figure 9 on page 73 and Figure 10 on page 73 show pairs of SRX Series devices with the fabric links and control links connected.
Figure 11 on page 74, Figure 12 on page 74, and Figure 13 on page 75 show pairs of SRX Series devices with the fabric links and control links connected.

Figure 11: Connecting SRX Series Devices in a Cluster (SRX5800 Devices)

Figure 12: Connecting SRX Series Devices in a Cluster (SRX5600 Devices)

NOTE: SRX5000 line devices do not have built-in ports, so the control link for these gateways must be the control ports on their Services Processing Cards (SPCs) with a slot numbering offset of 3 for SRX5400, offset of 6 for SRX5600 devices and 12 for SRX5800 devices.

When you connect a single control link on SRX5000 line devices, the control link ports are a one-to-one mapping with the Routing Engine slot. If your Routing Engine is in slot 0, you must use control port 0 to link the Routing Engines.
Figure 13: Connecting SRX Series Devices in a Cluster (SRX5400 Devices)

NOTE: Dual control links are not supported on an SRX5400 device due to the limited number of slots.

Figure 14 on page 75, Figure 15 on page 75 and Figure 16 on page 76 show pairs of SRX Series devices with the fabric links and control links connected.

Figure 14: Connecting SRX Series Devices in a Cluster (SRX3600 Devices)

Figure 15: Connecting SRX Series Devices in a Cluster (SRX3400 Devices)
NOTE: For dual control links on SRX3000 line devices, the Routing Engine must be in slot 0 and the SRX Clustering Module (SCM) in slot 1. The opposite configuration (SCM in slot 0 and Routing Engine in slot 1) is not supported.

Figure 16: Connecting SRX Series Devices in a Cluster (SRX1400 Devices)

Figure 17 on page 76, Figure 18 on page 76, Figure 19 on page 76, Figure 20 on page 77, Figure 21 on page 77, Figure 22 on page 77 and Figure 23 on page 77 all show pairs of SRX Series devices with the fabric links and control links connected.

Figure 17: Connecting SRX Series Devices in a Cluster (SRX650 Devices)

Figure 18: Connecting SRX Series Devices in a Cluster (SRX550 Devices)

Figure 19: Connecting SRX Series Devices in a Cluster (SRX240 Devices)
The fabric link connection for the SRX100 must be a pair of Fast Ethernet interfaces and for the SRX210 must be a pair of either Fast Ethernet or Gigabit Ethernet interfaces. The fabric link connection must be any pair of either Gigabit Ethernet or 10-Gigabit Ethernet interfaces on all SRX Series devices.

Related Documentation
- SRX Series Chassis Cluster Configuration Overview on page 62
- Example: Setting the Chassis Cluster Node ID and Cluster ID for SRX Series Devices on page 90
- Example: Configuring the Chassis Cluster Management Interface on page 94
- Example: Configuring the Number of Redundant Ethernet Interfaces in a Chassis Cluster on page 136
CHAPTER 5

Setting Up Chassis Cluster Identification

- Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming on page 79
- Example: Setting the Chassis Cluster Node ID and Cluster ID for SRX Series Devices on page 90

Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming

Supported Platforms

<table>
<thead>
<tr>
<th>Devices</th>
<th>Built-In Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Most SRX Series Devices</td>
<td>ge-0/0/0 ge-0/0/1 ge-0/0/2 ge-0/0/3 ...</td>
</tr>
</tbody>
</table>

NOTE: See the hardware documentation for your particular model (SRX Series Services Gateways) for details about SRX Series devices. See Interfaces Feature Guide for Security Devices for a full discussion of interface naming conventions.

Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500)

For chassis clustering, all SRX Series devices have a built-in management interface named fxp0. For most SRX Series devices, the fxp0 interface is a dedicated port.

For SRX340 and SRX345 devices, the fxp0 interface is a dedicated port. For SRX300 and SRX320 devices, after you enable chassis clustering and reboot the system, the built-in interface named ge-0/0/0 is repurposed as the management interface and is automatically renamed fxp0.

For SRX300, SRX320, SRX340, and SRX345 devices, after you enable chassis clustering and reboot the system, the build-in interface named ge-0/0/1 is repurposed as the control interface and is automatically renamed fxp1.
For SRX550M devices, control interfaces are dedicated Gigabit Ethernet ports.

SRX1500 devices have 16 GE interfaces and 4 XE ports.

After the devices are connected as a cluster, the slot numbering on one device changes and thus the interface numbering will change. The slot number for each slot in both nodes is determined using the following formula:

\[\text{cluster slot number} = (\text{node ID} \times \text{maximum slots per node}) + \text{local slot number} \]

In chassis cluster mode, all FPC related configuration is performed under `edit chassis node node-id fpc` hierarchy. In non-cluster mode, the FPC related configuration is performed under `edit chassis fpc` hierarchy.

Table 8 on page 80 shows the slot numbering, as well as the physical port and logical interface numbering, for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.

Table 8: SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>Node 0</td>
<td>1</td>
<td>0</td>
<td>fxp0</td>
<td>Dedicated Control port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>7</td>
<td>fxp0</td>
<td>Dedicated Control port</td>
<td>Any Ethernet port</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>em0</td>
<td>fab1</td>
</tr>
<tr>
<td>550</td>
<td>Node 0</td>
<td>9 (PIM slots)</td>
<td>0—8</td>
<td>ge-0/0/0</td>
<td>ge-0/0/0</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>9—17</td>
<td>ge-9/0/0</td>
<td>ge-9/0/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab1</td>
</tr>
</tbody>
</table>
Table 8: SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>340 and 345</td>
<td>Node 0</td>
<td>5 (PIM slots)</td>
<td>0—4</td>
<td>fxp0</td>
<td>ge-0/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td></td>
<td>5—9</td>
<td>fxp0</td>
<td>ge-5/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab1</td>
</tr>
<tr>
<td>320</td>
<td>Node 0</td>
<td>3 (PIM slots)</td>
<td>0—2</td>
<td>ge-0/0/0</td>
<td>ge-0/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td></td>
<td>3—5</td>
<td>ge-3/0/0</td>
<td>ge-3/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab1</td>
</tr>
<tr>
<td>300</td>
<td>Node 0</td>
<td>1 (PIM slot)</td>
<td>0</td>
<td>ge-0/0/0</td>
<td>ge-0/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td></td>
<td>1</td>
<td>ge-1/0/0</td>
<td>ge-0/0/1</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>fxp1</td>
<td>fab1</td>
</tr>
</tbody>
</table>

After you enable chassis clustering, the two chassis joined together cease to exist as individuals and now represent a single system. As a single system, the cluster now has twice as many slots. (See Figure 24 on page 81, Figure 25 on page 82, Figure 26 on page 82, Figure 27 on page 82, Figure 28 on page 82, and Figure 29 on page 82.)

Figure 24: Slot Numbering in SRX300 Chassis Cluster
Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (SRX4100 and SRX4200)

The SRX4100 and SRX4200 devices use following HA ports:

- 10G Base-T control interface link
- 10G Base-T fabric interface link
Supported fabric interface types for SRX4100 and SRX4200 devices are 10-Gigabit Ethernet (xe) (10-Gigabit Ethernet Interface SFP+ slots).

Table 9: SRX Series Chassis Cluster Slot Numbering, and Physical Port and Logical Interface Naming (SRX4100 and SRX4200 Devices)

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis Cluster</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX4100</td>
<td>Node 0</td>
<td>1</td>
<td>0</td>
<td>fxp0</td>
<td>Dedicated control port, em0</td>
<td>Dedicated fabric port, any Ethernet port (for dual fabric-link), fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>Dedicated fabric port, any Ethernet port (for dual fabric-link), fab0</td>
</tr>
<tr>
<td>SRX4200</td>
<td>Node 0</td>
<td>1</td>
<td>0</td>
<td>fxp0</td>
<td>Dedicated control port, em0</td>
<td>Dedicated fabric port, any Ethernet port (for dual fabric-link), fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>Dedicated fabric port, any Ethernet port (for dual fabric-link), fab0</td>
</tr>
</tbody>
</table>

Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (SRX5800, SRX5600, SRX5400)

For chassis clustering, all SRX Series devices have a built-in management interface named fxp0. For most SRX Series devices, the fxp0 interface is a dedicated port.

For the SRX5000 line, control interfaces are configured on SPCs.

Table 10 on page 84 and Table 9 on page 83 show the slot numbering, as well as the physical port and logical interface numbering, for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.
Table 10: SRX Series Chassis Cluster Slot Numbering, and Physical Port and Logical Interface Naming (SRX5000-Line Devices)

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis Cluster</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>5800</td>
<td>Node 0</td>
<td>12 (FPC slots)</td>
<td>0—11</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>12—23</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
<tr>
<td>5600</td>
<td>Node 0</td>
<td>6 (FPC slots)</td>
<td>0—5</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>6—11</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
<tr>
<td>5400</td>
<td>Node 0</td>
<td>3 (FPC slots)</td>
<td>0—2</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>3—5</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Control port on an SPC</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
</tbody>
</table>

NOTE: See the hardware documentation for your particular model (SRX Series Services Gateways) for details about SRX Series devices. See Interfaces Feature Guide for Security Devices for a full discussion of interface naming conventions.

FPC Slot Numbering in SRX Series Devices

After you enable chassis clustering, the two chassis joined together cease to exist as individuals and now represent a single system. As a single system, the cluster now has twice as many slots. (See Figure 30 on page 85.)
Figure 30: Slot Numbering in SRX5800 Chassis Cluster

Figure 31 on page 85 and Figure 32 on page 85 shows the slot numbering for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.

Figure 31: Slot Numbering in SRX4100 Chassis Cluster

Figure 32: Slot Numbering in SRX4200 Chassis Cluster

In chassis cluster mode, all FPC related configuration is performed under `edit chassis node node-id fpc` hierarchy. In non-cluster mode, the FPC related configuration is performed under `edit chassis fpc` hierarchy.

SRX Series Services Gateways Interface Renumbering

After the devices are connected as a cluster, the slot numbering on one device changes and thus the interface numbering will change. The slot number for each slot in both nodes is determined using the following formula:

\[
\text{cluster slot number} = (\text{node ID} \times \text{maximum slots per node}) + \text{local slot number}
\]

In chassis cluster mode, the interfaces on the secondary node are renumbered internally.
The node 1 renumbers its interfaces by adding the total number of system FPCs to the original FPC number of the interface. For example, see Table 11 on page 86 for interface renumbering on the SRX Series devices (SRX4100 and SRX4200).

Table 11: SRX Series Services Gateways Interface Renumbering

<table>
<thead>
<tr>
<th>Device</th>
<th>Renumbering Constant</th>
<th>Node 0 Interface Name</th>
<th>Node 1 Interface Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX4100</td>
<td>7</td>
<td>xe-0/0/0</td>
<td>xe-7/0/0</td>
</tr>
<tr>
<td>SRX4200</td>
<td>7</td>
<td>xe-0/0/1</td>
<td>xe-7/0/1</td>
</tr>
</tbody>
</table>

NOTE: On SRX4100 and SRX4200 devices, when the system comes up as chassis cluster, the xe-0/0/8 and xe-7/0/8 interfaces are automatically set as fabric interfaces links. You can set up another pair of fabric interfaces using any pair of 10-Gigabit interfaces to serve as the fabric between nodes. Note that, the automatically created fabric interfaces cannot be deleted. However, you can delete the second pair of fabric interfaces (manually configured interfaces).

FPC Slot Numbering in SRX Series Device Cards

SRX5600 and SRX5800 devices have Flex I/O Cards (Flex IOCs) that have two slots to accept the following port modules:

- SRX-IOC-4XGE-XFP 4-Port XFP
- SRX-IOC-16GE-TX 16-Port RJ-45
- SRX-IOC-16GE-SFP 16-Port SFP

You can use these port modules to add from 4 to 16 Ethernet ports to your SRX Series device. Port numbering for these modules is

```
slot/port module/port
```

where `slot` is the number of the slot in the device in which the Flex IOC is installed; `port module` is 0 for the upper slot in the Flex IOC or 1 for the lower slot when the card is vertical, as in an SRX5800 device; and `port` is the number of the port on the port module. When the card is horizontal, as in an SRX5400 or SRX5600 device, `port module` is 0 for the left-hand slot or 1 for the right-hand slot.

SRX5400 devices support only SRX5K-MPC cards. The SRX5K-MPC cards also have two slots to accept the following port modules:

- SRX-MIC-10XG-SFP 10-port-SFP+ (xe)
- SRX-MIC-20GE-SFP 20-port SFP (ge)
- SRX-MIC-1X100G-CFP 1-port CFP (et)
- SRX-MIC-2X40G-QSFP 2-port QSFP (et)
See the hardware guide for your specific SRX Series model (*SRX Series Services Gateways*).

Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (SRX3600, SRX3400, and SRX1400)

Table 12 on page 87 shows the slot numbering, as well as the physical port and logical interface numbering, for both of the SRX Series devices that become node 0 and node 1 of the chassis cluster after the cluster is formed.

Table 12: SRX Series Chassis Cluster Slot Numbering, and Physical Port and Logical Interface Naming

<table>
<thead>
<tr>
<th>Model</th>
<th>Chassis</th>
<th>Maximum Slots Per Node</th>
<th>Slot Numbering in a Cluster</th>
<th>Management Physical Port/Logical Interface</th>
<th>Control Physical Port/Logical Interface</th>
<th>Fabric Physical Port/Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>3600</td>
<td>Node 0</td>
<td>13 (CFM slots)</td>
<td>0 — 12</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>13 — 25</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
<tr>
<td>3400</td>
<td>Node 0</td>
<td>8 (CFM slots)</td>
<td>0 — 7</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>8 — 15</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
<tr>
<td>1400</td>
<td>Node 0</td>
<td>4 (FPC slots)</td>
<td>0 — 3</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab0</td>
</tr>
<tr>
<td></td>
<td>Node 1</td>
<td>4 — 7</td>
<td></td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Dedicated Gigabit Ethernet port</td>
<td>Any Ethernet port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fxp0</td>
<td>em0</td>
<td>fab1</td>
</tr>
</tbody>
</table>
Information about chassis cluster slot numbering is also provided in Figure 33 on page 88 and Figure 34 on page 88.

Figure 33: Slot Numbering in an SRX Series Chassis Cluster (SRX3600 Devices)

![Figure 33: Slot Numbering in an SRX Series Chassis Cluster (SRX3600 Devices)](image)

Figure 34: Slot Numbering in an SRX Series Chassis Cluster (SRX1400 Devices)

![Figure 34: Slot Numbering in an SRX Series Chassis Cluster (SRX1400 Devices)](image)

Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming (SRX650, SRX550, SRX240, SRX210, SRX110, and SRX100)

Information about chassis cluster slot numbering is also provided in Figure 35 on page 89, Figure 36 on page 89, Figure 37 on page 89, Figure 38 on page 89, Figure 39 on page 89, and Figure 40 on page 89.
Chapter 5: Setting Up Chassis Cluster Identification

Figure 35: Slot Numbering in SRX650 Chassis Cluster

Figure 36: Slot Numbering in SRX550 Chassis Cluster

Figure 37: Slot Numbering in SRX240 Chassis Cluster

Figure 38: Slot Numbering in SRX220 Chassis Cluster

Figure 39: Slot Numbering in SRX210 Chassis Cluster

Figure 40: Slot Numbering in SRX100 Chassis Cluster
CAUTION: Layer 2 switching must not be enabled on an SRX Series device when chassis clustering is enabled. If you have enabled Layer 2 switching, make sure you disable it before enabling chassis clustering.

The factory default configuration for SRX100, SRX210, and SRX220 devices automatically enables Layer 2 Ethernet switching. Because Layer 2 Ethernet switching is not supported in chassis cluster mode, if you use the factory default configuration for these devices, you must delete the Ethernet switching configuration before you enable chassis clustering. See Disabling Switching on SRX100, SRX210, and SRX220 Devices Before Enabling Chassis Clustering.

For SRX100, SRX210, and SRX220 devices, after you enable chassis clustering and reboot the system, the built-in interface named fe-0/0/6 is repurposed as the management interface and is automatically renamed fxp0.

For SRX240, SRX550, and SRX650 devices, control interfaces are dedicated Gigabit Ethernet ports. For SRX100, SRX210, and SRX220 devices, after you enable chassis clustering and reboot the system, the built-in interface named fe-0/0/7 is repurposed as the control interface and is automatically renamed fxp1.

In chassis cluster mode, the interfaces on the secondary node are renumbered internally. For example, the management interface port on the front panel of each SRX210 device is still labeled fe-0/0/6, but internally, the node 1 port is referred to as fe-2/0/6.

Related Documentation
- Example: Configuring Chassis Clustering on an SRX Series Devices on page 139

Example: Setting the Chassis Cluster Node ID and Cluster ID for SRX Series Devices

Supported Platforms SRX Series, vSRX

This example shows how to set the chassis cluster node ID and chassis cluster ID, which you must configure after connecting two devices together. A chassis cluster ID identifies the cluster to which the devices belong, and a chassis cluster node ID identifies a unique node within the cluster. After wiring the two devices together, you use CLI operational mode commands to enable chassis clustering by assigning a cluster ID and node ID on each chassis in the cluster. The cluster ID is the same on both nodes.

- Requirements on page 90
- Overview on page 91
- Configuration on page 91
- Verification on page 92

Requirements

Before you begin, ensure that you can connect to each device through the console port.
Ensure that the devices are running the same version of the Junos operating system (Junos OS), and SRX Series devices are of same model.

NOTE: The factory-default configuration of an SRX Series device includes the configuration of the interfaces on the device. Therefore, before enabling chassis clustering on the device, you must remove any existing configuration associated with those interfaces that will be transformed into the control and fabric interfaces. See “Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming” on page 79 for more information.

Overview

The system uses the chassis cluster ID and chassis cluster node ID to apply the correct configuration for each node (for example, when you use the `apply-groups` command to configure the chassis cluster management interface). The chassis cluster ID and node ID statements are written to the EPROM, and the statements take effect when the system is rebooted.

In this example, you configure a chassis cluster ID of 1. You also configure a chassis cluster node ID of 0 for the first node, which allows redundancy groups to be primary on this node when priority settings for both nodes are the same, and a chassis cluster node ID of 1 for the other node.

NOTE: Chassis cluster supports automatic synchronization of configurations. When a secondary node joins a primary node and a chassis cluster is formed, the primary node configuration is automatically copied and applied to the secondary node. See “Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes” on page 275.

Configuration

Step-by-Step Procedure

To specify the chassis cluster node ID and cluster ID, you need to set two devices to cluster mode and reboot the devices. You must enter the following operational mode commands on both devices:

1. Connect to the first device through the console port.

   ```
   user@host> set chassis cluster cluster-id 1 node 0 reboot
   Successfully enabled chassis cluster. Going to reboot now.
   ```

2. Connect to the second device through the console port.

   ```
   user@host> set chassis cluster cluster-id 1 node 1 reboot
   Successfully enabled chassis cluster. Going to reboot now.
   ```
NOTE: For SRX5400, SRX5600 and SRX5800 devices, you must configure the control ports before the cluster is formed.

To do this, you connect to the console port on the primary device, give it a node ID, and identify the cluster it will belong to, and then reboot the system. You then connect the console port to the other device, give it a node ID, and assign it the same cluster ID you gave to the first node, and then reboot the system. In both instances, you can cause the system to boot automatically by including the reboot parameter in the CLI command line. (For further explanation of primary and secondary nodes, see “Understanding Chassis Cluster Redundancy Groups” on page 119.)

Verification

Verifying Chassis Cluster Status

Purpose
Verify the status of a chassis cluster.

Action
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}[edit]
user@host> show chassis cluster status
```

<table>
<thead>
<tr>
<th>Cluster ID: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Redundancy group: 1 , Failover count: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
</tr>
<tr>
<td>node1</td>
</tr>
</tbody>
</table>

Meaning
The sample output shows that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

Related Documentation
- SRX Series Chassis Cluster Configuration Overview on page 62
- Example: Configuring the Chassis Cluster Management Interface on page 94
- Example: Configuring the Number of Redundant Ethernet Interfaces in a Chassis Cluster on page 136
CHAPTER 6

Setting Up Chassis Cluster Management Interfaces

- Management Interface on an Active Chassis Cluster on page 93
- Example: Configuring the Chassis Cluster Management Interface on page 94

Management Interface on an Active Chassis Cluster

Supported Platforms SRX Series, vSRX

Most of SRX Series devices contain an fxp0 interface. The fxp0 interfaces function like standard management interfaces on SRX Series devices and allow network access to each node in the cluster.

Management interfaces are the primary interfaces for accessing the device remotely. Typically, a management interface is not connected to the in-band network, but is connected instead to the device’s internal network. Through a management interface you can access the device over the network using utilities such as ssh and telnet and configure the device from anywhere, regardless of its physical location. SNMP can use the management interface to gather statistics from the device. A management interface enables authorized users and management systems connect to the device over the network.

Some SRX Series devices have a dedicated management port on the front panel. For other types of platforms, you can configure a management interface on one of the network interfaces. This interface can be dedicated to management or shared with other traffic. Before users can access the management interface, you must configure it. Information required to set up the management interface includes its IP address and prefix. In many types of Junos OS devices (or recommended configurations), it is not possible to route traffic between the management interface and the other ports. Therefore, you must select an IP address in a separate (logical) network, with a separate prefix (netmask).

For most SRX Series chassis clusters, the fxp0 interface is a dedicated port. SRX340 and SRX345 devices contain an fxp0 interface. SRX300 and SRX320 devices do not have a dedicated port for fxp0. The fxp0 interface is repurposed from a built-in interface. The fxp0 interface is created when the system reboots the devices after you designate one node as the primary device and the other as the secondary device.
We recommend giving each node in a chassis cluster a unique IP address for the fxp0 interface of each node. This practice allows independent node management.

NOTE: For some SRX Series devices, such as the SRX100 and SRX200 line devices, do not have a dedicated port for fxp0. For SRX100, SRX210, the fxp0 interface is repurposed from a built-in interface.

Related Documentation
- Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming on page 79

Example: Configuring the Chassis Cluster Management Interface

Supported Platforms

SRX Series, vSRX

This example shows how to provide network management access to a chassis cluster.

- Requirements on page 94
- Overview on page 94
- Configuration on page 95
- Verification on page 98

Requirements

Before you begin, set the chassis cluster node ID and cluster ID. See “Example: Setting the Chassis Cluster Node ID and Cluster ID” on page 90.

Overview

You must assign a unique IP address to each node in the cluster to provide network management access. This configuration is not replicated across the two nodes.

NOTE: If you try to access the nodes in a cluster over the network before you configure the fxp0 interface, you will lose access to the cluster.

In this example, you configure the following information for IPv4:

- Node 0 name—node0-router
- IP address assigned to node 0—10.1.1.1/24
- Node 1 name—node1-router
- IP address assigned to node 1—10.1.1.2/24

In this example, you configure the following information for IPv6:

- Node 0 name—node0-router
- IP address assigned to node 0—2001:db8:1::2/32
• Node 1 name—node1-router
• IP address assigned to node 1—2001:db8:1::3/32

Configuration

Configuring the Chassis Cluster Management Interface with IPv4 Addresses

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

To configure a chassis cluster management interface for IPv4:

[primary:node0][edit]
user@host# set groups node0 system host-name node0-router
set groups node0 interfaces fxp0 unit 0 family inet address 10.1.1.1/24
set groups node0 system host-name node0-router
set groups node0 interfaces fxp0 unit 0 family inet address 10.1.1.2/24

Step-by-Step Procedure

To configure a chassis cluster management interface for IPv4:

1. Configure the name of node 0 and assign an IP address.
 [primary:node0][edit]
 user@host# set groups node0 system host-name node0-router
 user@host# set groups node0 interfaces fxp0 unit 0 family inet address 10.1.1.1/24

2. Configure the name of node 1 and assign an IP address.
 [primary:node0][edit]
 set groups node1 system host-name node1-router
 set groups node1 interfaces fxp0 unit 0 family inet address 10.1.1.2/24

3. If you are done configuring the device, commit the configuration.
 [primary:node0][edit]
 user@host# commit

Results

From configuration mode, confirm your configuration by entering the show groups and show apply-groups commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[primary:node0][edit]
user@host# show groups
node0 {
 system {
 host-name node0-router;
 } interfaces [}
Verifying the Chassis Cluster Management Interface Configuration (IPv4 Addresses)

Purpose
Verify the chassis cluster management interface configuration.

Action
To verify the configuration is working properly, enter the `show interfaces terse, show configuration groups node node0 interfaces` and `show configuration groups node node1 interfaces` commands.

```plaintext
[primary:node0][edit]
user@host# show apply-groups
## Last changed: 2010-09-16 11:08:29 UTC
apply-groups "${node}"

If you are done configuring the device, enter **commit** from configuration mode.

```
user@host> show configuration groups node1 interfaces
fxp0 {
 unit 0 {
 family inet {
 address 10.1.1.2/24;
 }
 }
}

Meaning The output displays the management interface information with their status.

Configuring the Chassis Cluster Management Interface with IPv6 Addresses

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

To configure a chassis cluster management interface for IPv6:

{primary:node0}[edit]
user@host# set groups node0 system host-name node0-router
user@host# set groups node0 interfaces fxp0 unit 0 family inet6 address 2001:db8:1::2/32
user@host# set groups node1 system host-name node1-router
user@host# set groups node1 interfaces fxp0 unit 0 family inet6 address 2001:db8:1::3/32

Step-by-Step Procedure

To configure a chassis cluster management interface for IPv6:

1. Configure the name of node 0 and assign an IP address.

{primary:node0}[edit]
user@host# set groups node0 system host-name node0-router
user@host# set groups node0 interfaces fxp0 unit 0 family inet6 address 2001:db8:1::2/32

2. Configure the name of node 1 and assign an IP address.

{primary:node0}[edit]
user@host# set groups node1 system host-name node1-router
user@host# set groups node1 interfaces fxp0 unit 0 family inet6 address 2001:db8:1::3/32

3. If you are done configuring the device, commit the configuration.

{primary:node0}[edit]
user@host# commit
Results From configuration mode, confirm your configuration by entering the `show groups` and `show apply-groups` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
{primary:node0}[edit]
user@host# show groups
node0 {
  system {
    host-name node0-router;
  }
  interfaces {
    fxp0 {
      unit 0 {
        family inet {
          address 2001:db8:1::2/32;
        }
      }
    }
  }
}
node1 {
  system {
    host-name node1-router;
  }
  interfaces {
    fxp0 {
      unit 0 {
        family inet {
          address 2001:db8:1::3/32;
        }
      }
    }
  }
}

{primary:node0}[edit]
user@host# show apply-groups
## Last changed: 2010-09-16 11:08:29 UTC
apply-groups "${node}";
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying the Chassis Cluster Management Interface Configuration (IPV6 Addresses)

Purpose Verify the chassis cluster management interface configuration.

Action To verify the configuration is working properly, enter the `show interfaces terse` and `show configuration groups node0 interfaces` commands.

```
{primary:node0} [edit]
```
user@host> show interfaces terse | match fxp0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
<th>Status</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>fxp0</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>fxp0.0</td>
<td>up</td>
<td>up</td>
<td>inet 2001:db8:1::2/32</td>
</tr>
</tbody>
</table>

[primary:node0] [edit]
user@host> show configuration groups node0 interfaces

fxp0 {
 unit 0 {
 family inet {
 address 2001:db8:1::2/32;
 }
 }
}

[primary:node0] [edit]
user@host> show configuration groups node1 interfaces

fxp0 {
 unit 0 {
 family inet {
 address 2001:db8:1::3/32;
 }
 }
}

Meaning The output displays the management interface information with their status.

Related Documentation
- Management Interface on an Active Chassis Cluster on page 93
CHAPTER 7

Setting Up Fabric Interfaces on a Chassis Cluster

- Understanding Chassis Cluster Fabric Interfaces on page 101
- Example: Configuring the Chassis Cluster Fabric Interfaces on page 107
- Verifying Chassis Cluster Data Plane Interfaces on page 109
- Verifying Chassis Cluster Data Plane Statistics on page 110
- Clearing Chassis Cluster Data Plane Statistics on page 111

Understanding Chassis Cluster Fabric Interfaces

Supported Platforms SRX Series, vSRX

The fabric is a physical connection between two nodes of a cluster and is formed by connecting a pair of Ethernet interfaces back-to-back (one from each node).

Unlike for the control link, whose interfaces are determined by the system, you specify the physical interfaces to be used for the fabric data link in the configuration.

The fabric is the data link between the nodes and is used to forward traffic between the chassis. Traffic arriving on a node that needs to be processed on the other is forwarded over the fabric data link. Similarly, traffic processed on a node that needs to exit through an interface on the other node is forwarded over the fabric.

The data link is referred to as the fabric interface. It is used by the cluster’s Packet Forwarding Engines to transmit transit traffic and to synchronize the data plane software’s dynamic runtime state. The fabric provides for synchronization of session state objects created by operations such as authentication, Network Address Translation (NAT), Application Layer Gateways (ALGs), and IP Security (IPsec) sessions.

When the system creates the fabric interface, the software assigns it an internally derived IP address to be used for packet transmission.

CAUTION: After fabric interfaces have been configured on a chassis cluster, removing the fabric configuration on either node will cause the redundancy group 0 (RG0) secondary node to move to a disabled state. (Resetting a device to the factory default configuration removes the fabric configuration...
and thereby causes the RG0 secondary node to move to a disabled state.)
After the fabric configuration is committed, do not reset either device to the factory default configuration.

- Supported Fabric Interface Types for SRX Series Devices (SRX300 Series, SRX550M, SRX1500, SRX4100/SRX4200, and SRX5000 Series) on page 102
- Supported Fabric Interface Types for SRX Series Devices (SRX650, SRX550, SRX240, SRX210, and SRX100 Devices) on page 103
- Jumbo Frame Support on page 103
- Understanding Fabric Interfaces on SRX5000 Line Devices for IOC2 and IOC3 on page 103
- Understanding Session RTOs on page 104
- Understanding Data Forwarding on page 105
- Understanding Fabric Data Link Failure and Recovery on page 105

Supported Fabric Interface Types for SRX Series Devices (SRX300 Series, SRX550M, SRX1500, SRX4100/SRX4200, and SRX5000 Series)

For SRX Series chassis clusters, the fabric link can be any pair of Ethernet interfaces spanning the cluster; the fabric link can be any pair of Gigabit Ethernet interface. Examples:

- For SRX300, SRX320, SRX340, and SRX345 devices, the fabric link can be any pair of Gigabit Ethernet interfaces.
- For SRX Series chassis clusters made up of SRX550M devices, SFP interfaces on Mini-PIMs cannot be used as the fabric link.
- For SRX1500, the fabric link can be any pair of Ethernet interfaces spanning the cluster; the fabric link can be any pair of Gigabit Ethernet interface or any pair of 10-Gigabit Ethernet interface.
- Supported fabric interface types for SRX4100 and SRX4200 devices are 10-Gigabit Ethernet (xe) (10-Gigabit Ethernet Interface SFP+ slots).
- Supported fabric interface types supported for SRX5000 line devices are:
 - Fast Ethernet
 - Gigabit Ethernet
 - 10-Gigabit Ethernet
 - 40-Gigabit Ethernet
 - 100-Gigabit Ethernet

NOTE: Starting in Junos OS Release 12.1X46-D10 and Junos OS Release 17.3R1, 100-Gigabit Ethernet interface is supported on SRX5000-line devices.
For details about port and interface usage for management, control, and fabric links, see "Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming" on page 79.

Supported Fabric Interface Types for SRX Series Devices (SRX650, SRX550, SRX240, SRX210, and SRX100 Devices)

For SRX100, SRX210, SRX220, SRX240, SRX550, and SRX650 devices, the fabric link can be any pair of Gigabit Ethernet interfaces or Fast Ethernet interfaces (as applicable). Interfaces on SRX210 devices are Fast Ethernet or Gigabit Ethernet (the paired interfaces must be of a similar type) and all interfaces on SRX100 devices are Fast Ethernet interfaces.

Table 13 on page 103 shows the fabric interface types that are supported for SRX Series devices.

Table 13: Supported Fabric Interface Types for SRX Series Devices

<table>
<thead>
<tr>
<th>SRX650 and SRX550</th>
<th>SRX240</th>
<th>SRX220</th>
<th>SRX210</th>
<th>SRX100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Ethernet</td>
<td>Fast Ethernet</td>
<td>Fast Ethernet</td>
<td>Fast Ethernet</td>
<td></td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>Gigabit Ethernet</td>
<td>Gigabit Ethernet</td>
<td>Gigabit Ethernet</td>
<td></td>
</tr>
</tbody>
</table>

Jumbo Frame Support

The fabric data link does not support fragmentation. To accommodate this state, jumbo frame support is enabled by default on the link with an MTU size of 9014 bytes. To ensure that traffic that transits the data link does not exceed this size, we recommend that no other interfaces exceed the fabric data link's MTU size.

Understanding Fabric Interfaces on SRX5000 Line Devices for IOC2 and IOC3

Starting with Junos OS Release 15.1X49-D10, the SRX5K-MPC3-100G10G (IOC3) and the SRX5K-MPC3-40G10G (IOC3) are introduced.

The SRX5K-MPC (IOC2) is a Modular Port Concentrator (MPC) that is supported on the SRX5400, SRX5600, and SRX5800. This interface card accepts Modular Interface Cards (MICs), which add Ethernet ports to your services gateway to provide the physical connections to various network media types. The MPCs and MICs support fabric links for chassis clusters. The SRX5K-MPC provides 10-Gigabit Ethernet (with 10x10GE MIC), 40-Gigabit Ethernet, 100-Gigabit Ethernet, and 20x1GE Ethernet ports as fabric ports. On SRX5400 devices, only SRX5K-MPCs (IOC2) are supported.

The SRX5K-MPC3-100G10G (IOC3) and the SRX5K-MPC3-40G10G (IOC3) are Modular Port Concentrators (MPCs) that are supported on the SRX5400, SRX5600, and SRX5800. These interface cards accept Modular Interface Cards (MICs), which add Ethernet ports to your services gateway to provide the physical connections to various network media types. The MPCs and MICs support fabric links for chassis clusters.
The two types of IOC3 Modular Port Concentrators (MPCs), which have different built-in MICs, are the 24x10GE + 6x40GE MPC and the 2x100GE + 4x10GE MPC.

Due to power and thermal constraints, all four PICs on the 24x10GE + 6x40GE cannot be powered on. A maximum of two PICs can be powered on at the same time.

Use the `set chassis fpc <slot> pic <pic> power off` command to choose the PICs you want to power on.

WARNING:
On SRX5400, SRX5600, and SRX5800 devices in a chassis cluster, when the PICs containing fabric links on the SRX5K-MPC3-40G10G (IOC3) are powered off to turn on alternate PICs, always ensure that:

- The new fabric links are configured on the new PICs that are turned on. At least one fabric link must be present and online to ensure minimal RTO loss.
- The chassis cluster is in active-backup mode to ensure minimal RTO loss, once alternate links are brought online.
- If no alternate fabric links are configured on the PICs that are turned on, RTO synchronous communication between the two nodes stops and the chassis cluster session state will not back up, because the fabric link is missing. You can view the CLI output for this scenario indicating a bad chassis cluster state by using the `show chassis cluster interfaces` command.

Understanding Session RTOs

The data plane software, which operates in active/active mode, manages flow processing and session state redundancy and processes transit traffic. All packets belonging to a particular session are processed on the same node to ensure that the same security treatment is applied to them. The system identifies the node on which a session is active and forwards its packets to that node for processing. (After a packet is processed, the Packet Forwarding Engine transmits the packet to the node on which its egress interface exists if that node is not the local one.)

To provide for session (or flow) redundancy, the data plane software synchronizes its state by sending special payload packets called runtime objects (RTOs) from one node to the other across the fabric data link. By transmitting information about a session between the nodes, RTOs ensure the consistency and stability of sessions if a failover were to occur, and thus they enable the system to continue to process traffic belonging to existing sessions. To ensure that session information is always synchronized between the two nodes, the data plane software gives RTOs transmission priority over transit traffic.

The data plane software creates RTOs for UDP and TCP sessions and tracks state changes. It also synchronizes traffic for IPv4 pass-through protocols such as Generic Routing Encapsulation (GRE) and IPsec.
RTOs for synchronizing a session include:

- Session creation RTOs on the first packet
- Session deletion and age-out RTOs
- Change-related RTOs, including:
 - TCP state changes
 - Timeout synchronization request and response messages
 - RTOs for creating and deleting temporary openings in the firewall (pinholes) and child session pinholes

Understanding Data Forwarding

For Junos OS, flow processing occurs on a single node on which the session for that flow was established and is active. This approach ensures that the same security measures are applied to all packets belonging to a session.

A chassis cluster can receive traffic on an interface on one node and send it out to an interface on the other node. (In active/active mode, the ingress interface for traffic might exist on one node and its egress interface on the other.)

This traversal is required in the following situations:

- When packets are processed on one node, but need to be forwarded out an egress interface on the other node
- When packets arrive on an interface on one node, but must be processed on the other node

If the ingress and egress interfaces for a packet are on one node, but the packet must be processed on the other node because its session was established there, it must traverse the data link twice. This can be the case for some complex media sessions, such as voice-over-IP (VoIP) sessions.

Understanding Fabric Data Link Failure and Recovery

NOTE: Intrusion Detection and Prevention (IDP) services do not support failover. For this reason, IDP services are not applied for sessions that were present prior to the failover. IDP services are applied for new sessions created on the new primary node.

The fabric data link is vital to the chassis cluster. If the link is unavailable, traffic forwarding and RTO synchronization are affected, which can result in loss of traffic and unpredictable system behavior.

To eliminate this possibility, Junos OS uses fabric monitoring to check whether the fabric link, or the two fabric links in the case of a dual fabric link configuration, are alive by periodically transmitting probes over the fabric links. If Junos OS detects fabric faults,
RG1+ status of the secondary node changes to ineligible. It determines that a fabric fault has occurred if a fabric probe is not received but the fabric interface is active. To recover from this state, both the fabric links need to come back to online state and should start exchanging probes. As soon as this happens, all the FPCs on the previously ineligible node will be reset. They then come to online state and rejoin the cluster.

NOTE: If you make any changes to the configuration while the secondary node is disabled, execute the commit command to synchronize the configuration after you reboot the node. If you did not make configuration changes, the configuration file remains synchronized with that of the primary node.

NOTE: Starting with Junos OS Release 12.1X47-D10 and Junos OS Release 17.3R1, the fabric monitoring feature is enabled by default on SRX5800, SRX5600, and SRX5400 devices.

Starting with Junos OS Release 12.1X47-D10 and Junos OS Release 17.3R1, recovery of the fabric link and synchronization take place automatically.

When both the primary and secondary nodes are healthy (that is, there are no failures) and the fabric link goes down, RG1+ redundancy group(s) on the secondary node becomes ineligible. When one of the nodes is unhealthy (that is, there is a failure), RG1+ redundancy group(s) on this node (either the primary or secondary node) becomes ineligible. When both nodes are unhealthy and the fabric link goes down, RG1+ redundancy group(s) on the secondary node becomes ineligible. When the fabric link comes up, the node on which RG1+ became ineligible performs a cold synchronization on all Services Processing Units and transitions to active standby.

NOTE:

- If RG0 is primary on an unhealthy node, then RG0 will fail over from an unhealthy to a healthy node. For example, if node 0 is primary for RG0+ and node 0 becomes unhealthy, then RG1+ on node 0 will transition to ineligible after 66 seconds of a fabric link failure and RG0+ fails over to node 1, which is the healthy node.
- Only RG1+ transitions to an ineligible state. RG0 continues to be in either a primary or secondary state.

Use the show chassis cluster interfaces CLI command to verify the status of the fabric link.
Related Documentation

- Understanding Chassis Cluster Dual Fabric Links on page 241
- Example: Configuring the Chassis Cluster Fabric Interfaces on page 107
- Verifying Chassis Cluster Data Plane Interfaces on page 109
- Verifying Chassis Cluster Data Plane Statistics on page 110
- Clearing Chassis Cluster Data Plane Statistics on page 111
- Preparing Your Equipment for Chassis Cluster Formation on page 61

Example: Configuring the Chassis Cluster Fabric Interfaces

Supported Platforms

SRX Series, vSRX

This example shows how to configure the chassis cluster fabric. The fabric is the back-to-back data connection between the nodes in a cluster. Traffic on one node that needs to be processed on the other node or to exit through an interface on the other node passes over the fabric. Session state information also passes over the fabric.

- Requirements on page 107
- Overview on page 107
- Configuration on page 108
- Verification on page 109

Requirements

Before you begin, set the chassis cluster ID and chassis cluster node ID. See “Example: Setting the Chassis Cluster Node ID and Cluster ID for SRX Series Devices” on page 90.

Overview

In most SRX Series devices in a chassis cluster, you can configure any pair of Gigabit Ethernet interfaces or any pair of 10-Gigabit interfaces to serve as the fabric between nodes.
You cannot configure filters, policies, or services on the fabric interface. Fragmentation is not supported on the fabric link. The MTU size is 8980 bytes. We recommend that no interface in the cluster exceed this MTU size. Jumbo frame support on the member links is enabled by default.

This example illustrates how to configure the fabric link.

Only the same type of interfaces can be configured as fabric children, and you must configure an equal number of child links for fab0 and fab1.

NOTE: If you are connecting each of the fabric links through a switch, you must enable the jumbo frame feature on the corresponding switch ports. If both of the fabric links are connected through the same switch, the RTO-and-probes pair must be in one virtual LAN (VLAN) and the data pair must be in another VLAN. Here too, the jumbo frame feature must be enabled on the corresponding switch ports.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[primary:node0][edit]
set interfaces fab0 fabric-options member-interfaces ge-0/0/1
set interfaces fab1 fabric-options member-interfaces ge-7/0/1
```

Step-by-Step Procedure

To configure the chassis cluster fabric:

- Specify the fabric interfaces.

```
[primary:node0][edit]
user@host# set interfaces fab0 fabric-options member-interfaces ge-0/0/1
[primary:node0][edit]
user@host# set interfaces fab1 fabric-options member-interfaces ge-7/0/1
```

Results

From configuration mode, confirm your configuration by entering the show interfaces command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this show command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
[primary:node0][edit]
user@host# show interfaces
...
fab0 {
```
fabric-options {
 member-interfaces {
 ge-0/0/1;
 }
}

}

fab1 {
 fabric-options {
 member-interfaces {
 ge-7/0/1;
 }
 }
}

If you are done configuring the device, enter commit from configuration mode.

Verification

Verifying the Chassis Cluster Fabric

Purpose
Verify the chassis cluster fabric.

Action
From operational mode, enter the show interfaces terse | match fab command.

{primary:node0}
user@host> show interfaces terse | match fab
ge-0/0/1.0 up up aenet --> fab0.0
ge-7/0/1.0 up up aenet --> fab1.0
fab0 up up
fab0.0 up up inet 30.17.0.200/24
fab1 up up
fab1.0 up up inet 30.18.0.200/24

Related Documentation
• Understanding Chassis Cluster Fabric Interfaces on page 101
• Verifying Chassis Cluster Data Plane Interfaces on page 109

Verifying Chassis Cluster Data Plane Interfaces

Supported Platforms
SRX Series, vSRX

Purpose
Display chassis cluster data plane interface status.

Action
From the CLI, enter the show chassis cluster data-plane interfaces command:

{primary:node1}
user@host> show chassis cluster data-plane interfaces
fab0:
 Name Status
 ge-2/1/9 up
 ge-2/2/5 up
fab1:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-8/1/9</td>
<td>up</td>
</tr>
<tr>
<td>ge-8/2/5</td>
<td>up</td>
</tr>
</tbody>
</table>

Related Documentation

- Understanding Chassis Cluster Fabric Interfaces on page 101
- Example: Configuring the Chassis Cluster Fabric Interfaces on page 107
- Verifying Chassis Cluster Data Plane Statistics on page 110
- Clearing Chassis Cluster Data Plane Statistics on page 111

Verifying Chassis Cluster Data Plane Statistics

Supported Platforms SRX Series, vSRX

Purpose Display chassis cluster data plane statistics.

Action From the CLI, enter the `show chassis cluster data-plane statistics` command:

```
{primary:node1}
user@host> show chassis cluster data-plane statistics
```

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Related Documentation

- Understanding Chassis Cluster Fabric Interfaces on page 101
- Example: Configuring the Chassis Cluster Fabric Interfaces on page 107
- Verifying Chassis Cluster Data Plane Interfaces on page 109
- Clearing Chassis Cluster Data Plane Statistics on page 111
Clearing Chassis Cluster Data Plane Statistics

Supported Platforms
SRX Series, vSRX

To clear displayed chassis cluster data plane statistics, enter the `clear chassis cluster data-plane statistics` command from the CLI:

```plaintext
{primary:node1}
user@host> clear chassis cluster data-plane statistics

Cleared data-plane statistics
```

Related Documentation

- Understanding Chassis Cluster Fabric Interfaces on page 101
- Example: Configuring the Chassis Cluster Fabric Interfaces on page 107
- Verifying Chassis Cluster Data Plane Statistics on page 110
- Verifying Chassis Cluster Data Plane Interfaces on page 109
Understanding Chassis Cluster Control Plane and Control Links

Supported Platforms
- SRX Series, vSRX

The control plane software, which operates in active or backup mode, is an integral part of Junos OS that is active on the primary node of a cluster. It achieves redundancy by communicating state, configuration, and other information to the inactive Routing Engine on the secondary node. If the master Routing Engine fails, the secondary one is ready to assume control.

The control plane software:

- Runs on the Routing Engine and oversees the entire chassis cluster system, including interfaces on both nodes
- Manages system and data plane resources, including the Packet Forwarding Engine (PFE) on each node
- Synchronizes the configuration over the control link
- Establishes and maintains sessions, including authentication, authorization, and accounting (AAA) functions
- Manages application-specific signaling protocols
- Establishes and maintains management sessions, such as Telnet connections
- Handles asymmetric routing
- Manages routing state, Address Resolution Protocol (ARP) processing, and Dynamic Host Configuration Protocol (DHCP) processing

Information from the control plane software follows two paths:
On the primary node (where the Routing Engine is active), control information flows from the Routing Engine to the local Packet Forwarding Engine.

Control information flows across the control link to the secondary node's Routing Engine and Packet Forwarding Engine.

The control plane software running on the master Routing Engine maintains state for the entire cluster, and only processes running on its node can update state information. The master Routing Engine synchronizes state for the secondary node and also processes all host traffic.

Understanding Chassis Cluster Control Links

The control interfaces provide the control link between the two nodes in the cluster and are used for routing updates and for control plane signal traffic, such as heartbeat and threshold information that triggers node failover. The control link is also used to synchronize the configuration between the nodes. When you submit configuration statements to the cluster, the configuration is automatically synchronized over the control link.

The control link relies on a proprietary protocol to transmit session state, configuration, and liveliness signals across the nodes.

NOTE: For a single control link in a chassis cluster, the same control port should be used for the control link connection and for configuration on both nodes. For example, if port 0 is configured as a control port on node 0, then port 0 should be configured as a control port on node 1 with a cable connection between the two ports. For dual control links, control port 0 on node 0 should be connected to control port 0 on node 1 and control port 1 should be connected to control port 1 on node 1. Cross connections, that is, connecting port 0 on one node to port 1 on the other node and vice versa, do not work.

Control ports supported on SRX Series devices are:

- On SRX5400, SRX5600, and SRX5800 devices, by default, all control ports are disabled. Each SPC in a device has two control ports, and each device can have multiple SPCs plugged into it. To set up the control link in a chassis cluster with SRX5600 or SRX5800 devices, you connect and configure the control ports that you will use on each device (fpc<n> and fpc<n>) and then initialize the device in cluster mode.

- For SRX4100 and SRX4200 devices, there are dedicated chassis cluster (HA) control ports available. No control link configuration is needed for SRX4100 and SRX4200 devices.

NOTE: For SRX4100 and SRX4200 devices, when devices are not in cluster mode, dedicated HA ports cannot be used as revenue ports or traffic ports.

- SRX1500 devices use the dedicated control port.
For SRX300, SRX320, SRX340, SRX345, and SRX550M devices, the control link uses the `ge-0/0/1` interface.

For SRX240, SRX550M, and SRX650 devices, the control link uses the `ge-0/0/1` interface.

For SRX220 devices, the control link uses the `ge-0/0/7` interface.

For SRX100 and SRX210 devices, the control link uses the `fe-0/0/7` interface.

For details about port and interface usage for management, control, and fabric links, see “Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming” on page 79.

Related Documentation
- Verifying Chassis Cluster Control Plane Statistics on page 115
- Clearing Chassis Cluster Control Plane Statistics on page 116

Verifying Chassis Cluster Control Plane Statistics

Supported Platforms
SRX Series, vSRX

Purpose
Display chassis cluster control plane statistics.

Action
From the CLI, enter the `show chassis cluster control-plane statistics` command:

```
{primary:node1}
user@host> show chassis cluster control-plane statistics

Control link statistics:
  Control link 0:
    Heartbeat packets sent: 124
    Heartbeat packets received: 125

Fabric link statistics:
  Child link 0
    Probes sent: 124
    Probes received: 125

{primary:node1}
user@host> show chassis cluster control-plane statistics

Control link statistics:
  Control link 0:
    Heartbeat packets sent: 258698
    Heartbeat packets received: 258693
  Control link 1:
    Heartbeat packets sent: 258698
    Heartbeat packets received: 258693

Fabric link statistics:
  Child link 0
    Probes sent: 258690
    Probes received: 258690
  Child link 1
    Probes sent: 258505
    Probes received: 258505
```
Related Documentation

Clearing Chassis Cluster Control Plane Statistics

Supported Platforms

SRX Series, vSRX

To clear displayed chassis cluster control plane statistics, enter the clear chassis cluster control-plane statistics command from the CLI:

{primary:node1}
user@host> clear chassis cluster control-plane statistics

Cleared control-plane statistics

Related Documentation

Verifying Chassis Cluster Control Plane Statistics on page 115

Example: Configuring Chassis Cluster Control Ports

Supported Platforms

SRX Series, vSRX

This example shows how to configure chassis cluster control ports on SRX5400, SRX5600, and SRX5800 devices. You need to configure the control ports that you will use on each device to set up the control link.

- Requirements on page 116
- Overview on page 116
- Configuration on page 117
- Verification on page 117

Requirements

Before you begin:

- Understand chassis cluster control links. See "Understanding Chassis Cluster Control Plane and Control Links" on page 113.
- Physically connect the control ports on the devices. See "Connecting SRX Series Devices to Create a Chassis Cluster" on page 71.

Overview

By default, all control ports on SRX5400, SRX5600, and SRX5800 devices are disabled. After connecting the control ports, configuring the control ports, and establishing the chassis cluster, the control link is set up.

This example configures control ports with the following FPCs and ports as the control link:
Configuration

- FPC 4, port 0
- FPC 10, port 0

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```plaintext
[primary:node0][edit]
set chassis cluster control-ports fpc 4 port 0
set chassis cluster control-ports fpc 10 port 0
```

Step-by-Step Procedure

To configure control ports for use as the control link for the chassis cluster:

- Specify the control ports.

  ```plaintext
  [primary:node0][edit]
  user@host# set chassis cluster control-ports fpc 4 port 0
  [primary:node0][edit]
  user@host# set chassis cluster control-ports fpc 10 port 0
  ```

Results

From configuration mode, confirm your configuration by entering the `show chassis cluster` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```plaintext
[primary:node0][edit]
user@host# show chassis cluster

... control-ports {
  fpc 4 port 0;
  fpc 10 port 0;
}
...
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying the Chassis Cluster Status

Purpose

Verify the chassis cluster status.
Action
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status
Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 0 , Failover count: 1
node0       0       primary  no      no
node1       0       secondary no      no
```

Meaning
Use the `show chassis cluster status` command to confirm that the devices in the chassis cluster are communicating with each other. The chassis cluster is functioning properly, as one device is the primary node and the other is the secondary node.

Related Documentation
- Understanding Chassis Cluster Control Plane and Control Links on page 113
- Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming on page 79
- Connecting SRX Series Devices to Create a Chassis Cluster on page 71
CHAPTER 9

Setting Up Chassis Cluster Redundancy Groups

- Understanding Chassis Cluster Redundancy Groups on page 119
- Example: Configuring Chassis Cluster Redundancy Groups on page 123

Understanding Chassis Cluster Redundancy Groups

Supported Platforms SRX Series, vSRX

Chassis clustering provides high availability of interfaces and services through redundancy groups and primacy within groups.

A redundancy group is an abstract construct that includes and manages a collection of objects. A redundancy group contains objects on both nodes. A redundancy group is primary on one node and backup on the other at any time. When a redundancy group is said to be primary on a node, its objects on that node are active.

Redundancy groups are independent units of failover. Each redundancy group fails over from one node to the other independent of other redundancy groups. When a redundancy group fails over, all its objects fail over together.

Three things determine the primacy of a redundancy group: the priority configured for the node, the node ID (in case of tied priorities), and the order in which the node comes up. If a lower priority node comes up first, then it will assume the primacy for a redundancy group (and will stay as primary if preempt is not enabled). If preempt is added to a redundancy group configuration, the device with the higher priority in the group can initiate a failover to become master. By default, preemption is disabled. For more information on preemption, see preempt (Chassis Cluster).

A chassis cluster can include many redundancy groups, some of which might be primary on one node and some of which might be primary on the other. Alternatively, all redundancy groups can be primary on a single node. One redundancy group’s primacy does not affect another redundancy group’s primacy. You can create up to 128 redundancy groups.

NOTE: The maximum number of redundancy groups is equal to the number of redundant Ethernet interfaces that you configure.
You can configure redundancy groups to suit your deployment. You configure a redundancy group to be primary on one node and backup on the other node. You specify the node on which the group is primary by setting priorities for both nodes within a redundancy group configuration. The node with the higher priority takes precedence, and the redundancy group’s objects on it are active.

If a redundancy group is configured so that both nodes have the same priority, the node with the lowest node ID number always takes precedence, and the redundancy group is primary on it. In a two-node cluster, node 0 always takes precedence in a priority tie.

Understanding Chassis Cluster Redundancy Group 0: Routing Engines

When you initialize a device in chassis cluster mode, the system creates a redundancy group referred to as redundancy group 0. Redundancy group 0 manages the primacy and failover between the Routing Engines on each node of the cluster. As is the case for all redundancy groups, redundancy group 0 can be primary on only one node at a time.

The node on which redundancy group 0 is primary determines which Routing Engine is active in the cluster. A node is considered the primary node of the cluster if its Routing Engine is the active one.

The redundancy group 0 configuration specifies the priority for each node. The following priority scheme determines redundancy group 0 primacy. Note that the three-second value is the interval if the default heartbeat-threshold and heartbeat-interval values are used.

- The node that comes up first (at least three seconds prior to the other node) is the primary node.
- If both nodes come up at the same time (or within three seconds of each other):
 - The node with the higher configured priority is the primary node.
 - If there is a tie (either because the same value was configured or because default settings were used), the node with the lower node ID (node 0) is the primary node.

The previous priority scheme applies to redundancy groups \(x\) (redundancy groups numbered 1 through 128) as well, provided preempt is not configured. (See “Example: Configuring Chassis Cluster Redundancy Groups” on page 123.)

You cannot enable preemption for redundancy group 0. If you want to change the primary node for redundancy group 0, you must do a manual failover.

CAUTION: Be cautious and judicious in your use of redundancy group 0 manual failovers. A redundancy group 0 failover implies a Routing Engine failover, in which case all processes running on the primary node are killed and then spawned on the new master Routing Engine. This failover could result in loss of state, such as routing state, and degrade performance by introducing system churn.
Understanding Chassis Cluster Redundancy Groups 1 Through 128

You can configure one or more redundancy groups numbered 1 through 128, referred to as redundancy group \(x\). The maximum number of redundancy groups is equal to the number of redundant Ethernet interfaces that you configure (see Table 15 on page 128). Each redundancy group \(x\) acts as an independent unit of failover and is primary on only one node at a time.

Each redundancy group \(x\) contains one or more redundant Ethernet interfaces. A redundant Ethernet interface is a pseudo interface that contains at minimum a pair of physical Gigabit Ethernet interfaces or a pair of Fast Ethernet interfaces. If a redundancy group is active on node 0, then the child links of all the associated redundant Ethernet interfaces on node 0 are active. If the redundancy group fails over to node 1, then the child links of all redundant Ethernet interfaces on node 1 become active.

The following priority scheme determines redundancy group \(x\) primacy, provided preempt is not configured. If preempt is configured, the node with the higher priority is the primary node. Note that the three-second value is the interval if the default heartbeat-threshold and heartbeat-interval values are used.

- The node that comes up first (at least three seconds prior to the other node) is the primary node.
- If both nodes come up at the same time (or within three seconds of each other):
 - The node with the higher configured priority is the primary node.
 - If there is a tie (either because the same value was configured or because default settings were used), the node with the lower node ID (node 0) is the primary node.

On SRX Series chassis clusters, you can configure multiple redundancy groups to load-share traffic across the cluster. For example, you can configure some redundancy groups \(x\) to be primary on one node and some redundancy groups \(x\) to be primary on the other node. You can also configure a redundancy group \(x\) in a one-to-one relationship with a single redundant Ethernet interface to control which interface traffic flows through.

The traffic for a redundancy group is processed on the node where the redundancy group is active. Because more than one redundancy group can be configured, it is possible that the traffic from some redundancy groups is processed on one node while the traffic for other redundancy groups is processed on the other node (depending on where the redundancy group is active). Multiple redundancy groups make it possible for traffic to arrive over an ingress interface of one redundancy group and over an egress interface that belongs to another redundancy group. In this situation, the ingress and egress interfaces might not be active on the same node. When this happens, the traffic is forwarded over the fabric link to the appropriate node.

When you configure a redundancy group \(x\), you must specify a priority for each node to determine the node on which the redundancy group \(x\) is primary. The node with the higher priority is selected as primary. The primacy of a redundancy group \(x\) can fail over from one node to the other. When a redundancy group \(x\) fails over to the other node, its
redundant Ethernet interfaces on that node are active and their interfaces are passing traffic.

Table 14 on page 122 gives an example of redundancy group x in an SRX Series chassis cluster and indicates the node on which the group is primary. It shows the redundant Ethernet interfaces and their interfaces configured for redundancy group x.

NOTE: Some devices have both Gigabit Ethernet ports and Fast Ethernet ports.

<table>
<thead>
<tr>
<th>Group</th>
<th>Primary</th>
<th>Priority</th>
<th>Objects</th>
<th>Interface (Node 0)</th>
<th>Interface (Node 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy group 0</td>
<td>Node 0</td>
<td>Node 0: 254</td>
<td>Routing Engine on node 0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Node 1: 2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Routing Engine on node 1</td>
<td>—</td>
</tr>
<tr>
<td>Redundancy group 1</td>
<td>Node 0</td>
<td>Node 0: 254</td>
<td>Redundant Ethernet interface 0</td>
<td>ge-1/0/0</td>
<td>ge-5/0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Node 1: 2</td>
<td>ge-5/3/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Redundant Ethernet interface 1</td>
<td>ge-1/3/0</td>
</tr>
<tr>
<td>Redundancy group 2</td>
<td>Node 1</td>
<td>Node 0: 2</td>
<td>Redundant Ethernet interface 2</td>
<td>ge-2/0/0</td>
<td>ge-6/0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Node 1: 254</td>
<td>ge-6/3/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Redundant Ethernet interface 3</td>
<td>ge-2/3/0</td>
</tr>
<tr>
<td>Redundancy group 3</td>
<td>Node 0</td>
<td>Node 0: 254</td>
<td>Redundant Ethernet interface 4</td>
<td>ge-3/0/0</td>
<td>ge-7/0/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Node 1: 2</td>
<td>ge-7/3/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Redundant Ethernet interface 5</td>
<td>ge-3/3/0</td>
</tr>
</tbody>
</table>

As the example for a chassis cluster in Table 14 on page 122 shows:

- The Routing Engine on node 0 is active because redundancy group 0 is primary on node 0. (The Routing Engine on node 1 is passive, serving as backup.)
- Redundancy group 1 is primary on node 0. Interfaces ge-1/0/0 and ge-1/3/0 belonging to redundant Ethernet interface 0 and redundant Ethernet interface 1 are active and handling traffic.
- Redundancy group 2 is primary on node 1. Interfaces ge-6/0/0 and ge-6/3/0 belonging to redundant Ethernet interface 2 and redundant Ethernet interface 3 are active and handling traffic.
- Redundancy group 3 is primary on node 0. Interfaces ge-3/0/0 and ge-3/3/0 belonging to redundant Ethernet interface 4 and redundant Ethernet interface 5 are active and handling traffic.

Related Documentation
- Example: Configuring Chassis Cluster Redundancy Groups on page 123

Example: Configuring Chassis Cluster Redundancy Groups

Supported Platforms
SRX Series, vSRX

This example shows how to configure a chassis cluster redundancy group.

- Requirements on page 123
- Overview on page 123
- Configuration on page 124
- Verification on page 125

Requirements

Before you begin:

1. Set the chassis cluster node ID and cluster ID. See "Example: Setting the Chassis Cluster Node ID and Cluster ID" on page 90.

2. Configure the chassis cluster management interface. See "Example: Configuring the Chassis Cluster Management Interface" on page 94.

Overview

A chassis cluster redundancy group is an abstract entity that includes and manages a collection of objects. Each redundancy group acts as an independent unit of failover and is primary on only one node at a time.

In this example, you create two chassis cluster redundancy groups, 0 and 1:

- 0—Node 0 is assigned a priority of 100, and node 1 is assigned a priority of 1.
- 1—Node 0 is assigned a priority of 100, and node 1 is assigned a priority of 1.

The preempt option is enabled, and the number of gratuitous ARP requests that an interface can send to notify other network devices of its presence after the redundancy group it belongs to has failed over is 4.
Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
[edit]
set chassis cluster redundancy-group 0 node 0 priority 100
set chassis cluster redundancy-group 0 node 1 priority 1
set chassis cluster redundancy-group 1 node 0 priority 100
set chassis cluster redundancy-group 1 node 1 priority 1
set chassis cluster redundancy-group 1 preempt
set chassis cluster redundancy-group 1 gratuitous-arp-count 4
```

Step-by-Step Procedure

To configure a chassis cluster redundancy group:

1. Specify a redundancy group's priority for primacy on each node of the cluster. The higher number takes precedence.

```
{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 0 node 0 priority 100
user@host# set chassis cluster redundancy-group 0 node 1 priority 1
user@host# set chassis cluster redundancy-group 1 node 0 priority 100
user@host# set chassis cluster redundancy-group 1 node 1 priority 1
```

2. Specify whether a node with a higher priority can initiate a failover to become primary for the redundancy group.

```
{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 1 preempt
```

3. Specify the number of gratuitous ARP requests that an interface can send to notify other network devices of its presence after the redundancy group it belongs to has failed over.

```
{primary:node0}[edit]
user@host# set chassis cluster redundancy-group 1 gratuitous-arp-count 4
```

Results

From configuration mode, confirm your configuration by entering the `show chassis cluster status redundancy-group` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
{primary:node0}[edit]
user@host# show chassis cluster
chassis {
  cluster {
    redundancy-group 0 {
      node 0 priority 100;
      node 1 priority 1;
    }
  }
```

Copyright © 2017, Juniper Networks, Inc.
redundancy-group 1 {
 node 0 priority 100;
 node 1 priority 1;
 preempt;
 gratuitous-arp-count 4;
}

If you are done configuring the device, enter commit from configuration mode.

Verification

Verifying Chassis Cluster Redundancy Group Status

Purpose
Verify the status of a chassis cluster redundancy group.

Action
From operational mode, enter the show chassis cluster status redundancy-group command.

{primary:node0}
user@host>show chassis cluster status redundancy-group 1

Cluster ID: 1

Node Priority Status Preempt Manual failover
node0 100 secondary no no
node1 1 primary yes no

Related Documentation
• Understanding Chassis Cluster Redundancy Groups on page 119
CHAPTER 10

Setting Up Chassis Cluster Redundant Ethernet Interfaces

- Understanding Chassis Cluster Redundant Ethernet Interfaces on page 127
- Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses on page 131
- Example: Configuring the Number of Redundant Ethernet Interfaces in a Chassis Cluster on page 136

Understanding Chassis Cluster Redundant Ethernet Interfaces

Supported Platforms | SRX Series, vSRX

A redundant Ethernet interface is a pseudointerface that includes at minimum one physical interface from each node of the cluster.

NOTE: For SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 devices, the total number of logical interfaces that you can configure across all the redundant Ethernet (reth) interfaces in a chassis cluster deployment is 1024.

NOTE: For SRX5800, SRX5600, SRX5400 devices, the total number of logical interfaces that you can configure across all the redundant Ethernet (reth) interfaces in a chassis cluster deployment is 4,096.

NOTE: For SRX100, SRX210, SRX220, SRX240, SRX550M, and SRX650 devices, the total number of logical interfaces that you can configure across all the redundant Ethernet (reth) interfaces in a chassis cluster deployment is 1,024.

A redundant Ethernet interface must contain, at minimum, a pair of Fast Ethernet interfaces or a pair of Gigabit Ethernet interfaces that are referred to as child interfaces of the redundant Ethernet interface (the redundant parent). If two or more child interfaces
from each node are assigned to the redundant Ethernet interface, a redundant Ethernet interface link aggregation group can be formed. A single redundant Ethernet interface might include a Fast Ethernet interface from node 0 and a Fast Ethernet interface from node 1 or a Gigabit Ethernet interface from node 0 and a Gigabit Ethernet interface from node 1.

On SRX5600, and SRX5800 devices, interfaces such as 10-Gigabit Ethernet (xe), 40-Gigabit Ethernet, and 100-Gigabit Ethernet can be redundant Ethernet (reth) interfaces.

NOTE: A redundant Ethernet interface is referred to as a reth in configuration commands.

A redundant Ethernet interface's child interface is associated with the redundant Ethernet interface as part of the child interface configuration. The redundant Ethernet interface child interface inherits most of its configuration from its parent.

The maximum number of redundant Ethernet interfaces that you can configure varies, depending on the device type you are using, as shown in Table 15 on page 128 and Table 16 on page 129. Note that the number of redundant Ethernet interfaces configured determines the number of redundancy groups that can be configured.

Table 15: Maximum Number of Redundant Ethernet Interfaces Allowed (SRX4100, SRX4200, SRX5400, SRX5600, SRX5800, SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500)

<table>
<thead>
<tr>
<th>Device</th>
<th>Maximum Number of reth Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX4100, SRX4200</td>
<td>128</td>
</tr>
<tr>
<td>SRX5400, SRX5600, SRX5800</td>
<td>128</td>
</tr>
<tr>
<td>SRX300, SRX320, SRX340, SRX345</td>
<td>128</td>
</tr>
<tr>
<td>SRX550M</td>
<td>58</td>
</tr>
<tr>
<td>SRX1500</td>
<td>128</td>
</tr>
</tbody>
</table>
Table 16: Maximum Number of Redundant Ethernet Interfaces Allowed (SRX100, SRX210, SRX220, SRX240, SRX550, and SRX650)

<table>
<thead>
<tr>
<th>Device</th>
<th>Maximum Number of reth Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX100</td>
<td>8</td>
</tr>
<tr>
<td>SRX210</td>
<td>8</td>
</tr>
<tr>
<td>SRX220</td>
<td>8</td>
</tr>
<tr>
<td>SRX240</td>
<td>24</td>
</tr>
<tr>
<td>SRX550</td>
<td>58</td>
</tr>
<tr>
<td>SRX650</td>
<td>68</td>
</tr>
</tbody>
</table>

A redundant Ethernet interface’s child interface is associated with the redundant Ethernet interface as part of the child interface configuration. The redundant Ethernet interface child interface inherits most of its configuration from its parent.

NOTE: You can enable promiscuous mode on redundant Ethernet interfaces. When promiscuous mode is enabled on a Layer 3 Ethernet interface, all packets received on the interface are sent to the central point or Services Processing Unit (SPU), regardless of the destination MAC address of the packet. If you enable promiscuous mode on a redundant Ethernet interface, promiscuous mode is then enabled on any child physical interfaces.

To enable promiscuous mode on a redundant Ethernet interface, use the `promiscuous-mode` statement at the `[edit interfaces]` hierarchy.

A redundant Ethernet interface inherits its failover properties from the redundancy group to which it belongs. A redundant Ethernet interface remains active as long as its primary child interface is available or active. For example, if reth0 is associated with redundancy group 1 and redundancy group 1 is active on node 0, then reth0 is up as long as the node 0 child of reth0 is up.

Point-to-Point Protocol over Ethernet (PPPoE) over redundant Ethernet (reth) interface is supported on SRX100, SRX210, SRX220, SRX240, SRX550, SRX650, SRX300, SRX320, SRX340, SRX345, and SRX550M devices in chassis cluster mode. This feature allows an existing PPPoE session to continue without starting a new PPP0E session in the event of a failover.

Point-to-Point Protocol over Ethernet (PPPoE) over redundant Ethernet (reth) interface is supported on SRX300, SRX320, SRX340, SRX345, and SRX550M devices in chassis cluster mode. This feature allows an existing PPPoE session to continue without starting a new PPP0E session in the event of a failover.
NOTE: On SRX300, SRX320, SRX340, SRX345, and SRX550M devices, the number of child interfaces per node is restricted to eight on the reth interface and the number of child interfaces per reth interface is restricted to eight.

NOTE: When using SRX Series devices in chassis cluster mode, we recommend that you do not configure any local interfaces (or combination of local interfaces) along with redundant Ethernet interfaces. For example:

The following configuration of chassis cluster redundant Ethernet interfaces, in which interfaces are configured as local interfaces, is not supported:

```plaintext
ge-2/0/2 {
    unit 0 {
        family inet {
            address 1.1.1.1/24;
        }
    }
}
```

The following configuration of chassis cluster redundant Ethernet interfaces, in which interfaces are configured as part of redundant Ethernet interfaces, is supported:

```plaintext
interfaces [
    ge-2/0/2 {
        gigether-options {
            redundant-parent reth2;
        }
    }
]
reth2 {
    redundant-ether-options {
        redundancy-group1;
    }
    unit 0 {
        family inet {
            address 1.1.1.1/24;
        }
    }
}
```
NOTE: You can enable promiscuous mode on redundant Ethernet interfaces. When promiscuous mode is enabled on a Layer 3 Ethernet interface, all packets received on the interface are sent to the central point or Services Processing Unit (SPU), regardless of the destination MAC address of the packet. If you enable promiscuous mode on a redundant Ethernet interface, promiscuous mode is then enabled on any child physical interfaces.

To enable promiscuous mode on a redundant Ethernet interface, use the promiscuous-mode statement at the [edit interfaces] hierarchy.

Related Documentation
- Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses on page 131
- Understanding Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups on page 255
- Understanding Conditional Route Advertising in a Chassis Cluster on page 249
- Preparing Your Equipment for Chassis Cluster Formation on page 61

Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses

Supported Platforms
- SRX Series, vSRX

This example shows how to configure chassis cluster redundant Ethernet interfaces. A redundant Ethernet interface is a pseudointerface that contains two or more physical interfaces, with at least one from each node of the cluster.

- Requirements on page 131
- Overview on page 132
- Configuration on page 132
- Verification on page 135

Requirements

Before you begin:

- Understand how to set the chassis cluster node ID and cluster ID. See “Example: Setting the Chassis Cluster Node ID and Cluster ID” on page 90.

- Set the number of redundant Ethernet interfaces.

- Understand how to set the chassis cluster fabric. See “Example: Configuring the Chassis Cluster Fabric Interfaces” on page 107.

- Understand how to set the chassis cluster node redundancy groups. See “Example: Configuring Chassis Cluster Redundancy Groups” on page 123.
Overview

After physical interfaces have been assigned to the redundant Ethernet interface, you set the configuration that pertains to them at the level of the redundant Ethernet interface, and each of the child interfaces inherits the configuration.

If multiple child interfaces are present, then the speed of all the child interfaces must be the same.

A redundant Ethernet interface is referred to as a reth in configuration commands.

NOTE: You can enable promiscuous mode on redundant Ethernet interfaces. When promiscuous mode is enabled on a Layer 3 Ethernet interface, all packets received on the interface are sent to the central point or Services Processing Unit regardless of the destination MAC address of the packet. If you enable promiscuous mode on a redundant Ethernet interface, promiscuous mode is then enabled on any child physical interfaces.

To enable promiscuous mode on a redundant Ethernet interface, use the promiscuous-mode statement at the [edit interfaces] hierarchy.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[primary:node0][edit]
user@host# set interfaces ge-0/0/0 gigether-options redundant-parent reth1
set interfaces ge-7/0/0 gigether-options redundant-parent reth1
set interfaces fe-1/0/0 fast-ether-options redundant-parent reth2
set interfaces fe-8/0/0 fast-ether-options redundant-parent reth2
set interfaces reth1 redundant-ether-options redundancy-group 1
set interfaces reth1 unit 0 family inet mtu 1500
set interfaces reth1 unit 0 family inet address 10.1.1.3/24
set security zones security-zone Trust interfaces reth1.0
```

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[primary:node0][edit]
user@host# set interfaces ge-0/0/0 gigether-options redundant-parent reth1
set interfaces ge-7/0/0 gigether-options redundant-parent reth1
set interfaces fe-1/0/0 fast-ether-options redundant-parent reth2
set interfaces fe-8/0/0 fast-ether-options redundant-parent reth2
set interfaces reth2 redundant-ether-options redundancy-group 1
set interfaces reth2 unit 0 family inet6 mtu 1500
set interfaces reth2 unit 0 family inet6 address 2010:2010:201::2/64
```
Step-by-Step Procedure

To configure redundant Ethernet interfaces for IPv4:

1. Bind redundant child physical interfaces to reth1.
   ```
   [primary:node0][edit]
   user@host# set interfaces ge-0/0/0 gigether-options redundant-parent reth1
   user@host# set interfaces ge-7/0/0 gigether-options redundant-parent reth1
   ```

2. Bind redundant child physical interfaces to reth2.
   ```
   [primary:node0][edit]
   user@host# set interfaces fe-1/0/0 fast-ether-options redundant-parent reth2
   user@host# set interfaces fe-8/0/0 fast-ether-options redundant-parent reth2
   ```

3. Add reth1 to redundancy group 1.
   ```
   [primary:node0][edit]
   user@host# set interfaces reth1 redundant-ether-options redundancy-group 1
   ```

4. Set the MTU size.
   ```
   [primary:node0][edit]
   user@host# set interfaces reth1 unit 0 family inet mtu 1500
   ```

 NOTE: The maximum transmission unit (MTU) set on the reth interface can be different from the MTU on the child interface.

5. Assign an IP address to reth1.
   ```
   [primary:node0][edit]
   user@host# set interfaces reth1 unit 0 family inet address 10.1.1.3/24
   ```

6. Associate reth1.0 to the trust security zone.
   ```
   [primary:node0][edit]
   user@host# set security zones security-zone Trust interfaces reth1.0
   ```

To configure redundant Ethernet interfaces for IPv6:

1. Bind redundant child physical interfaces to reth1.
   ```
   [primary:node0][edit]
   user@host# set interfaces ge-0/0/0 gigether-options redundant-parent reth1
   user@host# set interfaces ge-7/0/0 gigether-options redundant-parent reth1
   ```

2. Bind redundant child physical interfaces to reth2.
   ```
   [primary:node0][edit]
   ```
user@host# set interfaces fe-1/0/0 fast-ether-options redundant-parent reth2
user@host# set interfaces fe-8/0/0 fast-ether-options redundant-parent reth2

3. Add reth2 to redundancy group 1.
 [primary:node0][edit]
 user@host# set interfaces reth2 redundant-ether-options redundancy-group 1

4. Set the MTU size.
 [primary:node0][edit]
 user@host# set interfaces reth2 unit 0 family inet6 mtu 1500

5. Assign an IP address to reth2.
 [primary:node0][edit]
 user@host# set interfaces reth2 unit 0 family inet6 address 2010:2010:201::2/64

6. Associate reth2.0 to the trust security zone.
 [primary:node0][edit]
 user@host# set security zones security-zone Trust interfaces reth2.0

Results From configuration mode, confirm your configuration by entering the `show interfaces reth0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

 [primary:node0][edit]
 user@host# show interfaces
 interfaces {
 ...
 fe-1/0/0 {
 fastether-options {
 redundant-parent reth2;
 }
 }
 fe-8/0/0 {
 fastether-options {
 redundant-parent reth2;
 }
 }
 ge-0/0/0 {
 gigether-options {
 redundant-parent reth1;
 }
 }
 ge-7/0/0 {
 gigether-options {
 redundant-parent reth1;
 }
 }
 }
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

- Verifying Chassis Cluster Redundant Ethernet Interfaces on page 135
- Verifying Chassis Cluster Control Links on page 135

Verifying Chassis Cluster Redundant Ethernet Interfaces

Purpose
Verify the configuration of the chassis cluster redundant Ethernet interfaces.

Action
From operational mode, enter the `show interfaces | match reth1` command:

```plaintext
{primary: node0}
user@host> show interfaces | match reth1
ge-0/0/0.0              up    down aenet    --> reth1.0
ge-7/0/0.0              up    down aenet    --> reth0.0
reth1                   up    down
reth1.0                 up    down inet     10.1.1.3/24
```

Verifying Chassis Cluster Control Links

Purpose
Verify information about the control interface in a chassis cluster configuration.
Action
From operational mode, enter the `show chassis cluster interfaces` command:

```
{primary:node0}
user@host> show chassis cluster interfaces
```

Control link status: Down

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Down</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Down

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status (Physical/Monitored)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fab0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Related Documentation

- Understanding Chassis Cluster Redundant Ethernet Interfaces on page 127

Example: Configuring the Number of Redundant Ethernet Interfaces in a Chassis Cluster

Supported Platforms
SRX Series, vSRX

This example shows how to specify the number of redundant Ethernet interfaces for a chassis cluster. You must configure the redundant Ethernet interfaces count so that the redundant Ethernet interfaces that you configure are recognized.

- Requirements on page 136
- Overview on page 136
- Configuration on page 137
- Verification on page 137

Requirements

Before you begin, set the chassis cluster ID and chassis cluster node ID. See “Example: Setting the Chassis Cluster Node ID and Cluster ID” on page 90.

Overview

Before you configure redundant Ethernet interfaces for a chassis cluster, you must specify the number of redundant Ethernet interfaces for the chassis cluster.

In this example, you set the number of redundant Ethernet interfaces for a chassis cluster to 2.
Configuration

Step-by-Step Procedure

1. Specify the number of redundant Ethernet interfaces:
 [primary:node0][edit]
 user@host# set chassis cluster reth-count 2

2. If you are done configuring the device, commit the configuration.
 [edit]
 user@host# commit

Verification

Verifying the Number of Redundant Ethernet Interfaces

Purpose
Verify that the configuration is working properly.

Action
To verify the configuration, enter the `show configuration chassis cluster` command.

Related Documentation
- Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses on page 131
CHAPTER 11

Configuring Chassis Cluster

- Example: Configuring Chassis Clustering on an SRX Series Devices on page 139
- Example: Enabling Eight-Queue Class of Service on Redundant Ethernet Interfaces on page 152
- Verifying a Chassis Cluster Configuration on page 161
- Verifying Chassis Cluster Statistics on page 161
- Clearing Chassis Cluster Statistics on page 163

Example: Configuring Chassis Clustering on an SRX Series Devices

Supported Platforms
SRX Series, vSRX

This example shows how to set up chassis clustering on an SRX Series device (using SRX1500 as example).

- Requirements on page 139
- Overview on page 140
- Configuration on page 141
- Verification on page 149

Requirements

Before you begin:

- Physically connect the two devices and ensure that they are the same models. For example, on the SRX1500 Services Gateway, connect the dedicated control ports on node 0 and node 1.

 NOTE: For SRX300, SRX320, SRX340, and SRX345 devices, connect ge-0/0/1 on node 0 to ge-0/0/1 on node 1.

- Set the two devices to cluster mode and reboot the devices. You must enter the following operational mode commands on both devices, for example:
 - On node 0:

 user@host > set chassis cluster cluster-id 1 node 0 reboot
On node 1:

```
user@host> set chassis cluster cluster-id 1 node 1 reboot
```

The cluster-id is the same on both devices, but the node ID must be different because one device is node 0 and the other device is node 1. The range for the cluster-id is 0 through 255 and setting it to 0 is equivalent to disabling cluster mode.

After clustering occurs for the devices, continuing with the SRX1500 Services Gateway example, the ge-0/0/0 interface on node 1 changes to ge-7/0/0.

NOTE:

After clustering occurs,

- For SRX300 devices, the ge-0/0/1 interface on node 1 changes to ge-1/0/1.
- For SRX320 devices, the ge-0/0/1 interface on node 1 changes to ge-3/0/1.
- For SRX340 and SRX345 devices, the ge-0/0/1 interface on node 1 changes to ge-5/0/1.

NOTE:

After the reboot, the following interfaces are assigned and repurposed to form a cluster:

- For SRX300 and SRX320 devices, ge-0/0/0 becomes fxp0 and is used for individual management of the chassis cluster.
- SRX340 and SRX345 devices contain a dedicated port fxp0.
- For all SRX300, SRX320, SRX340 and SRX345 devices, ge-0/0/1 becomes fxp1 and is used as the control link within the chassis cluster.
- The other interfaces are also renamed on the secondary device.

See “Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming” on page 79 for complete mapping of the SRX Series devices.

From this point forward, configuration of the cluster is synchronized between the node members and the two separate devices function as one device.

Overview

This example shows how to set up chassis clustering on an SRX Series device using the SRX1500 device as example.

The node 1 renumbers its interfaces by adding the total number of system FPCs to the original FPC number of the interface. See Table 17 on page 141 for interface renumbering on the SRX Series device.
Table 17: SRX Series Services Gateways Interface Renumbering

<table>
<thead>
<tr>
<th>SRX Series Services Gateway</th>
<th>Renumbering Constant</th>
<th>Node 0 Interface Name</th>
<th>Node 1 Interface Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX300</td>
<td>1</td>
<td>ge-0/0/0</td>
<td>ge-1/0/0</td>
</tr>
<tr>
<td>SRX320</td>
<td>3</td>
<td>ge-0/0/0</td>
<td>ge-3/0/0</td>
</tr>
<tr>
<td>SRX340</td>
<td>5</td>
<td>ge-0/0/0</td>
<td>ge-5/0/0</td>
</tr>
<tr>
<td>SRX345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRX550M</td>
<td>9</td>
<td>ge-0/0/0</td>
<td>ge-9/0/0</td>
</tr>
<tr>
<td>SRX1500</td>
<td>7</td>
<td>ge-0/0/0</td>
<td>ge-7/0/0</td>
</tr>
</tbody>
</table>

After clustering is enabled, the system creates fxp0, fxp1, and em0 interfaces. Depending on the device, the fxp0, fxp1, and em0 interfaces that are mapped to a physical interface are not user defined. However, the fab interface is user defined.

Figure 41 on page 141 shows the topology used in this example.

Figure 41: SRX Series Devices (SRX1500) In Chassis Cluster

Configuration

CLI Quick Configuration

To quickly configure a chassis cluster on an SRX1500 Services Gateway, copy the following commands and paste them into the CLI:

On [primary:node0]

```
[edit]
set groups node0 system host-name srx1500-1
set groups node0 interfaces fxp unit 0 family inet address 192.16.35.46/24
```
set groups node1 system host-name srx1500-2
set groups node1 interfaces fxp0 unit 0 family inet address 192.16.35.47/24
set groups node0 system backup-router <backup next-hop from fxp0> destination
<management network/mask>
set groups node1 system backup-router <backup next-hop from fxp0> destination
<management network/mask>
set apply-groups "$[node]"
set interfaces fab0 fabric-options member-interfaces ge-0/0/1
set interfaces fab1 fabric-options member-interfaces ge-2/0/1
set chassis cluster redundancy-group 0 node 0 priority 100
set chassis cluster redundancy-group 0 node 1 priority 1
set chassis cluster redundancy-group 1 node 0 priority 100
set chassis cluster redundancy-group 1 node 1 priority 1
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/3 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/2 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-7/0/3 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-7/0/2 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-7/0/1 weight 255
set interfaces ge-0/0/2 gigether-options redundant-parent reth1
set interfaces ge-7/0/2 gigether-options redundant-parent reth1
set interfaces reth1 redundant-ether-options redundancy-group 1
set interfaces reth1 unit 0 family inet address 1.2.0.233/24
set interfaces ge-0/0/3 gigether-options redundant-parent reth0
set interfaces ge-7/0/3 gigether-options redundant-parent reth0
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth0 unit 0 family inet address 10.16.8.1/24
set security zones security-zone Untrust interfaces reth1.0
set security zones security-zone Trust interfaces reth0.0

If you are configuring SRX300, SRX320, SRX340, SRX345, and SRX550M device, see Table 18 on page 142 for command and interface settings for your device and substitute these commands into your CLI.

Table 18: SRX Series Services Gateways Interface Settings

<table>
<thead>
<tr>
<th>Command</th>
<th>SRX300</th>
<th>SRX320</th>
<th>SRX340</th>
<th>SRX345</th>
<th>SRX550M</th>
</tr>
</thead>
<tbody>
<tr>
<td>set interfaces fab0 fabric-options member-interfaces</td>
<td>ge-0/0/2</td>
<td>ge-0/0/2</td>
<td>ge-0/0/2</td>
<td>ge-0/0/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces fab1 fabric-options member-interfaces</td>
<td>ge-1/0/2</td>
<td>ge-3/0/2</td>
<td>ge-5/0/2</td>
<td>ge-9/0/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>ge-0/0/3 weight 255</td>
<td>ge-0/0/3 weight 255</td>
<td>ge-0/0/3 weight 255</td>
<td>ge-1/0/0 weight 255</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>ge-0/0/4 weight 255</td>
<td>ge-0/0/4 weight 255</td>
<td>ge-0/0/4 weight 255</td>
<td>ge-10/0/0 weight 255</td>
<td></td>
</tr>
</tbody>
</table>
Table 18: SRX Series Services Gateways Interface Settings (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>SRX300</th>
<th>SRX320</th>
<th>SRX340</th>
<th>SRX345</th>
<th>SRX550M</th>
</tr>
</thead>
<tbody>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>ge-1/0/3 weight 255</td>
<td>ge-3/0/3 weight 255</td>
<td>ge-5/0/3 weight 255</td>
<td>ge-1/0/1 weight 255</td>
<td></td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>ge-1/0/4 weight 255</td>
<td>ge-3/0/4 weight 255</td>
<td>ge-5/0/4 weight 255</td>
<td>ge-10/0/1 weight 255</td>
<td></td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-0/0/3 gigether-options redundant-parent reth0</td>
<td>ge-0/0/3 gigether-options redundant-parent reth0</td>
<td>ge-0/0/3 gigether-options redundant-parent reth0</td>
<td>ge-1/0/0 gigether-options redundant-parent reth1</td>
<td></td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-0/0/4 gigether-options redundant-parent reth1</td>
<td>ge-0/0/4 gigether-options redundant-parent reth1</td>
<td>ge-0/0/4 gigether-options redundant-parent reth1</td>
<td>ge-10/0/0 gigether-options redundant-parent reth1</td>
<td></td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-1/0/3 gigether-options redundant-parent reth0</td>
<td>ge-3/0/3 gigether-options redundant-parent reth0</td>
<td>ge-5/0/3 gigether-options redundant-parent reth0</td>
<td>ge-1/0/1 gigether-options redundant-parent reth0</td>
<td></td>
</tr>
<tr>
<td>set interfaces</td>
<td>ge-1/0/4 gigether-options redundant-parent reth1</td>
<td>ge-3/0/4 gigether-options redundant-parent reth1</td>
<td>ge-5/0/4 gigether-options redundant-parent reth1</td>
<td>ge-10/0/1 gigether-options redundant-parent reth0</td>
<td></td>
</tr>
</tbody>
</table>

Table 19: SRX Series Services Gateways Interface Settings (SRX100, SRX210, SRX220, SRx240, SRX550)

<table>
<thead>
<tr>
<th>Command</th>
<th>SRX100</th>
<th>SRX210</th>
<th>SRX220</th>
<th>SRX240</th>
<th>SRX550</th>
</tr>
</thead>
<tbody>
<tr>
<td>set interfaces fab0 fabric-options member-interfaces</td>
<td>fe-0/0/1</td>
<td>ge-0/0/1</td>
<td>ge-0/0/0 to ge-0/0/5</td>
<td>ge-0/0/2</td>
<td>ge-0/0/2</td>
</tr>
<tr>
<td>set interfaces fab1 fabric-options member-interfaces</td>
<td>fe-1/0/1</td>
<td>ge-2/0/1</td>
<td>ge-3/0/0 to ge-3/0/5</td>
<td>ge-5/0/2</td>
<td>ge-9/0/2</td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>fe-0/0/0 weight 255</td>
<td>fe-0/0/3 weight 255</td>
<td>ge-0/0/0 weight 255</td>
<td>ge-0/0/5 weight 255</td>
<td>ge-1/0/0 weight 255</td>
</tr>
<tr>
<td>set chassis cluster redundancy-group 1 interface-monitor</td>
<td>fe-0/0/2 weight 255</td>
<td>fe-0/0/2 weight 255</td>
<td>ge-3/0/0 weight 255</td>
<td>ge-5/0/5 weight 255</td>
<td>ge-10/0/0 weight 255</td>
</tr>
</tbody>
</table>
Table 19: SRX Series Services Gateways Interface Settings (SRX100, SRX210, SRX220, SRx240, SRX550) (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>SRX100</th>
<th>SRX210</th>
<th>SRX220</th>
<th>SRX240</th>
<th>SRX550</th>
</tr>
</thead>
<tbody>
<tr>
<td>set chassis cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundancy-group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-1/0/1 weight</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-2/0/3 weight</td>
<td>255</td>
<td>ge-0/0/1 weight</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/6 weight</td>
<td>255</td>
<td>ge-5/0/6 weight</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-1/0/1 weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set chassis cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundancy-group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-1/0/2 weight</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-2/0/2 weight</td>
<td>255</td>
<td>ge-3/0/1 weight</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-5/0/6 weight</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-1/0/0 weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fastether-options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundant-parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fastether-options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundant-parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fastether-options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundant-parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fastether-options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundant-parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fastether-options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundant-parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fe-0/0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fastether-options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundant-parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fe-0/0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fastether-options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundant-parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fe-0/0/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fastether-options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundant-parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fe-2/0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fastether-options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundant-parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fe-2/0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fastether-options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundant-parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fe-1/0/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fastether-options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundant-parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reth0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure a chassis cluster on an SRX Series device:

1. Set up hostnames and management IP addresses for each device using configuration groups. These configurations are specific to each device and are unique to its specific node.

   ```
   user@host# set groups node0 system host-name srx1500-1
   ```

NOTE: Perform Steps 1 through 5 on the primary device (node 0). They are automatically copied over to the secondary device (node 1) when you execute a commit command. The configurations are synchronized because the control link and fab link interfaces are activated. To verify the configurations, use the `show interface terse` command and review the output.
Set the default route and backup router for each node.

```
user@host# set groups node0 system backup-router <backup next-hop from fxp0>
    destination <management network/mask>
user@host# set groups node1 system backup-router <backup next-hop from fxp0>
    destination <management network/mask>
```

Set the apply-group command so that the individual configurations for each node set by the previous commands are applied only to that node.

```
user@host# set apply-groups "$[node]"
```

2. Define the interfaces used for the fabric connection (data plane links for RTO sync) by using physical ports ge-0/0/1 from each node. These interfaces must be connected back-to-back, or through a Layer 2 infrastructure.

```
user@host# set interfaces fab0 fabric-options member-interfaces ge-0/0/1
user@host# set interfaces fab1 fabric-options member-interfaces ge-7/0/1
```

3. Set up redundancy group 0 for the Routing Engine failover properties, and set up redundancy group 1 (all interfaces are in one redundancy group in this example) to define the failover properties for the redundant Ethernet interfaces.

```
user@host# set chassis cluster redundancy-group 0 node 0 priority 100
user@host# set chassis cluster redundancy-group 0 node 1 priority 1
user@host# set chassis cluster redundancy-group 1 node 0 priority 100
user@host# set chassis cluster redundancy-group 1 node 1 priority 1
```

4. Set up interface monitoring to monitor the health of the interfaces and trigger redundancy group failover.

```
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/3
    weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/2
    weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-7/0/3
    weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-7/0/2
    weight 255
```

NOTE: We do not recommend Interface monitoring for redundancy group 0 because it causes the control plane to switch from one node to another node in case interface flap occurs.
NOTE: Interface failover only occurs after the weight reaches 0.

5. Set up the redundant Ethernet (reth) interfaces and assign the redundant interface to a zone.

```
user@host# set chassis cluster reth-count 2
user@host# set interfaces ge-0/0/2 gigether-options redundant-parent reth1
user@host# set interfaces ge-7/0/2 gigether-options redundant-parent reth1
user@host# set interfaces reth1 redundant-ether-options redundancy-group 1
user@host# set interfaces reth1 unit 0 family inet address 1.2.0.233/24
user@host# set interfaces ge-0/0/3 gigether-options redundant-parent reth0
user@host# set interfaces ge-7/0/3 gigether-options redundant-parent reth0
user@host# set interfaces reth0 redundant-ether-options redundancy-group 1
user@host# set interfaces reth0 unit 0 family inet address 10.16.81/24
user@host# set security zones security-zone Untrust interfaces reth1.0
user@host# set security zones security-zone Trust interfaces reth0.0
```

Results From operational mode, confirm your configuration by entering the `show configuration` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
> show configuration
version x.xx.x;
groups {
  node0 {
    system {
      host-name SRX1500-1;
      backup-router 10.100.22.1 destination 66.129.243.0/24;
    }
    interfaces {
      fxp0 {
        unit 0 {
          family inet {
            address 192.16.35.46/24;
          }
        }
      }
    }
  }
  node1 {
  }
  node1 {
    system {
      host-name SRX1500-2;
      backup-router 10.100.21.1 destination 66.129.243.0/24;
    }
    interfaces {
      fxp0 {
        unit 0 {
          family inet {
            address 192.16.35.47/24;
          }
        }
      }
    }
  }
}
```
apply-groups "${node}";
chassis {
 cluster {
 reth-count 2;
 redundancy-group 0 {
 node 0 priority 100;
 node 1 priority 1;
 }
 redundancy-group 1 {
 node 0 priority 100;
 node 1 priority 1;
 interface-monitor {
 ge-0/0/3 weight 255;
 ge-0/0/2 weight 255;
 ge-7/0/2 weight 255;
 ge-7/0/3 weight 255;
 }
 }
 }
 interfaces {
 ge-0/0/2 {
 gigether-options {
 redundant-parent reth1;
 }
 unit 0 {
 family inet {
 address 2.2.2.2/30;
 }
 }
 }
 ge-0/0/3 {
 gigether-options {
 redundant-parent reth0;
 }
 }
 ge-7/0/2 {
 gigether-options {
 redundant-parent reth1;
 }
 }
 ge-7/0/3 {
 gigether-options {
 redundant-parent reth0;
 }
 }
 fab0 {
 fabric-options {
 member-interfaces {
 ge-0/0/1;
 }
 }
 }
 fab1 {
 fabric-options {

member-interfaces {
 ge-2/0/1;
}
}
}
reth0 {
 redundant-ether-options {
 redundancy-group 1;
 }
 unit 0 {
 family inet {
 address 10.16.8.1/24;
 }
 }
}
}
reth1 {
 redundant-ether-options {
 redundancy-group 1;
 }
 unit 0 {
 family inet {
 address 1.2.0.233/24;
 }
 }
}
}
...
security {
 zones {
 security-zone Untrust {
 interfaces {
 reth1.0;
 }
 }
 security-zone Trust {
 interfaces {
 reth0.0;
 }
 }
 }
 policies {
 from-zone Trust to-zone Untrust {
 policy 1 {
 match {
 source-address any;
 destination-address any;
 application any;
 }
 then {
 permit;
 }
 }
 }
 }
}

If you are done configuring the device, enter commit from configuration mode.
Verification

Confirm that the configuration is working properly.

- Verifying Chassis Cluster Status on page 149
- Verifying Chassis Cluster Interfaces on page 149
- Verifying Chassis Cluster Statistics on page 150
- Verifying Chassis Cluster Control Plane Statistics on page 150
- Verifying Chassis Cluster Data Plane Statistics on page 151
- Verifying Chassis Cluster Redundancy Group Status on page 151
- Troubleshooting with Logs on page 152

Verifying Chassis Cluster Status

Purpose

Verify the chassis cluster status, failover status, and redundancy group information.

Action

From operational mode, enter the `show chassis cluster status` command.

```bash
{primary:node0}
user@host# show chassis cluster status
Cluster ID: 1
Node          Priority   Status  Preempt  Manual failover
Redundancy group: 0 , Failover count: 1
node0        100        primary  no      no
node1         1           secondary no      no
Redundancy group: 1 , Failover count: 1
node0         0           primary  no      no
node1         0           secondary no      no
```

Verifying Chassis Cluster Interfaces

Purpose

Verify information about chassis cluster interfaces.

Action

From operational mode, enter the `show chassis cluster interfaces` command.

```bash
{primary:node0}
user@host> show chassis cluster interfaces
Control link name: em0

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-7/0/3</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-7/0/2</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Verifying Chassis Cluster Statistics

Purpose Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitored interfaces in the cluster.

Action From operational mode, enter the `show chassis cluster statistics` command.

```
{primary:node0}
user@host> show chassis cluster statistics

Control link statistics:
  Control link 0:
    Heartbeat packets sent: 2276
    Heartbeat packets received: 2280
    Heartbeat packets errors: 0

Fabric link statistics:
  Child link 0
    Probes sent: 2272
    Probes received: 597

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Verifying Chassis Cluster Control Plane Statistics

Purpose Verify information about chassis cluster control plane statistics (heartbeats sent and received) and the fabric link statistics (probes sent and received).
Action
From operational mode, enter the `show chassis cluster control-plane statistics` command.

```
{primary:node0}
user@host> show chassis cluster control-plane statistics
```

Control link statistics:
 Control link 0:
 Heartbeat packets sent: 2294
 Heartbeat packets received: 2298
 Heartbeat packets errors: 0

Fabric link statistics:
 Child link 0
 Probes sent: 2290
 Probes received: 615

Verifying Chassis Cluster Data Plane Statistics

Purpose
Verify information about the number of RTOs sent and received for services.

Action
From operational mode, enter the `show chassis cluster data-plane statistics` command.

```
{primary:node0}
user@host> show chassis cluster data-plane statistics
```

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster Redundancy Group Status

Purpose
Verify the state and priority of both nodes in a cluster and information about whether the primary node has been preempted or whether there has been a manual failover.
Action From operational mode, enter the `chassis cluster status redundancy-group` command.

```
{primary:node0}
user@host> show chassis cluster status redundancy-group 1
Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>50</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
```

Troubleshooting with Logs

Purpose Use these logs to identify any chassis cluster issues. You should run these logs on both nodes.

Action From operational mode, enter these `show log` commands.

```
user@host> show log jsrp
user@host> show log chassisd
user@host> show log messages
user@host> show log dcd
user@host> show traceoptions
```

Related Documentation
- Understanding Chassis Cluster Redundancy Groups on page 119.
- Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming on page 79

Example: Enabling Eight-Queue Class of Service on Redundant Ethernet Interfaces

Supported Platforms SRX Series

This example shows how to enable eight-queue CoS on redundant Ethernet interfaces on SRX Series devices in a chassis cluster. This example is applicable to SRX5800, SRX5600, SRX5400, SRX4200, and SRX4100.

- Requirements on page 152
- Overview on page 153
- Configuration on page 154
- Verification on page 160

Requirements

This example uses the following hardware and software components:

- Two SRX5600 Service Gateways in a chassis cluster
- Junos OS Release 11.4R4 or later for SRX Series Services Gateways
Before you begin:

- Understand chassis cluster configuration. See “Example: Configuring an Active/Passive Chassis Cluster on SRX Series Services Gateways” on page 302.
- Understand chassis cluster redundant interface configuration. See “Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses” on page 131.

Overview

The SRX Series devices support eight queues, but only four queues are enabled by default. Use the `set chassis fpc x pic y max-queues-per-interface 8` command to enable eight queues explicitly at the chassis level. The values of x and y depends on the location of the IOC and the PIC number where the interface is located on the device on which CoS needs to be implemented. To find the IOC location use the `show chassis fpc pic-status` or `show chassis hardware` commands.

You must restart the chassis control for the configuration to take effect.

NOTE: On SRX Series devices, eight QoS queues are supported per ae interface.

Figure 42 on page 154 shows how to configure eight-queue CoS on redundant Ethernet interfaces on SRX Series devices in a chassis cluster.
Figure 42: Eight-Queue CoS on Redundant Ethernet Interfaces

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

- set chassis fpc 5 pic 1 max-queues-per-interface 8
- set chassis fpc 5 pic 1 max-queues-per-interface 8
- set chassis cluster reth-count 2
- set chassis cluster control-ports fpc 4 port 0
- set chassis cluster control-ports fpc 10 port 0
- set chassis cluster redundancy-group 0 node 0 priority 254
- set chassis cluster redundancy-group 0 node 1 priority 1
- set chassis cluster redundancy-group 1 node 0 priority 200
- set chassis cluster redundancy-group 1 node 1 priority 100
- set interfaces ge-5/1/14 gigether-options redundant-parent reth0
- set interfaces ge-5/1/15 gigether-options redundant-parent reth1
- set interfaces ge-11/1/14 gigether-options redundant-parent reth0
- set interfaces ge-11/1/15 gigether-options redundant-parent reth1
- set interfaces reth0 vlan-tagging
- set interfaces reth0 redundant-ether-options redundancy-group 1
- set interfaces reth0 unit 0 vlan-id 1350
- set interfaces reth0 unit 0 family inet address 192.0.2.1/24
- set interfaces reth1 hierarchical-scheduler
set interfaces reth1 vlan-tagging
set interfaces reth1 redundant-ether-options redundancy-group 2
set interfaces reth1 unit 0 vlan-id 1351
set interfaces reth1 unit 0 family inet address 192.0.2.2/24
set interfaces reth1 unit 1 vlan-id 1352
set interfaces reth1 unit 1 family inet address 192.0.2.3/24
set interfaces reth1 unit 2 vlan-id 1353
set interfaces reth1 unit 2 family inet address 192.0.2.4/24
set interfaces reth1 unit 3 vlan-id 1354
set interfaces reth1 unit 3 family inet address 192.0.2.5/24
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q0
 loss-priority low code-points 000
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q2
 loss-priority low code-points 010
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q3
 loss-priority low code-points 011
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q1 loss-priority
 low code-points 001
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q4
 loss-priority low code-points 100
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q5
 loss-priority low code-points 101
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q6
 loss-priority low code-points 110
set class-of-service classifiers inet-precedence inet_prec_4 forwarding-class q7
 loss-priority low code-points 111
set class-of-service forwarding-classes queue 0 q0
set class-of-service forwarding-classes queue 1 q1
set class-of-service forwarding-classes queue 2 q2
set class-of-service forwarding-classes queue 3 q3
set class-of-service forwarding-classes queue 4 q4
set class-of-service forwarding-classes queue 5 q5
set class-of-service forwarding-classes queue 6 q6
set class-of-service forwarding-classes queue 7 q7
set class-of-service traffic-control-profiles 1 scheduler-map sched_map
set class-of-service traffic-control-profiles 1 shaping-rate 200m
set class-of-service interfaces reth0 unit 0 classifiers inet-precedence inet_prec_4
set class-of-service interfaces reth1 unit 0 output-traffic-control-profile 1
set class-of-service scheduler-maps sched_map forwarding-class q0 scheduler S0
set class-of-service scheduler-maps sched_map forwarding-class q1 scheduler S1
set class-of-service scheduler-maps sched_map forwarding-class q2 scheduler S2
set class-of-service scheduler-maps sched_map forwarding-class q3 scheduler S3
set class-of-service scheduler-maps sched_map forwarding-class q4 scheduler S4
set class-of-service scheduler-maps sched_map forwarding-class q5 scheduler S5
set class-of-service scheduler-maps sched_map forwarding-class q6 scheduler S6
set class-of-service scheduler-maps sched_map forwarding-class q7 scheduler S7
set class-of-service schedulers S0 transmit-rate percent 20
set class-of-service schedulers S1 transmit-rate percent 5
set class-of-service schedulers S2 transmit-rate percent 5
set class-of-service schedulers S3 transmit-rate percent 10
set class-of-service schedulers S4 transmit-rate percent 10
set class-of-service schedulers S5 transmit-rate percent 10
set class-of-service schedulers S6 transmit-rate percent 10
set class-of-service schedulers S7 transmit-rate percent 30
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

To enable eight-queue CoS on redundant Ethernet interfaces:

1. Configure a maximum of eight queues on the interfaces on Node 0 and Node 1.

   ```
   [edit chassis]
   user@host# set fpc 5 pic 1 max-queues-per-interface 8
   ```

 NOTE: In addition to configuring eight queues at the [edit chassis] hierarchy level, the configuration at the [edit class-of-service] hierarchy level must support eight queues per interface.

2. Specify the number of redundant Ethernet interfaces.

   ```
   [edit chassis cluster]
   user@host# set reth-count 2
   ```

3. Configure the control ports.

   ```
   [edit chassis cluster]
   user@host# set control-ports fpc 4 port 0
   user@host# set control-ports fpc 10 port 0
   ```

4. Configure redundancy groups.

   ```
   [edit chassis cluster]
   user@host# set redundancy-group 0 node 0 priority 254
   user@host# set redundancy-group 0 node 1 priority 1
   user@host# set redundancy-group 1 node 0 priority 200
   user@host# set redundancy-group 1 node 1 priority 100
   ```

5. Configure the redundant Ethernet interfaces.

   ```
   [edit interfaces]
   user@host# set ge-5/1/14 gigether-options redundant-parent reth0
   user@host# set ge-11/1/14 gigether-options redundant-parent reth0
   user@host# set ge-5/1/15 gigether-options redundant-parent reth1
   user@host# set ge-11/1/15 gigether-options redundant-parent reth1
   user@host# set reth0 redundant-ether-options redundancy-group 1
   user@host# set reth0 vlan-tagging
   user@host# set reth0 unit 0 vlan-id 1350
   user@host# set reth0 unit 0 family inet address 192.0.2.1/24
   user@host# set reth1 hierarchical-scheduler
   user@host# set reth1 vlan-tagging
   user@host# set reth1 redundant-ether-options redundancy-group 2
   user@host# set reth1 unit 0 vlan-id 1351
   user@host# set reth1 unit 0 family inet address 192.0.2.2/24
   user@host# set reth1 unit 1 vlan-id 1352
   ```
user@host# set reth1 unit 1 family inet address 192.0.2.3/24
user@host# set reth1 unit 2 vlan-id 1353
user@host# set reth1 unit 2 family inet address 192.0.2.4/24
user@host# set reth1 unit 3 vlan-id 1354
user@host# set reth1 unit 3 family inet address 192.0.2.5/24

6. Define a classifier and apply it to a logical interface.

 [edit class-of-service]
 user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q0
 loss-priority low code-points 000
 user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q2
 loss-priority low code-points 010
 user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q3
 loss-priority low code-points 011
 user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q1
 loss-priority low code-points 001
 user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q4
 loss-priority low code-points 100
 user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q5
 loss-priority low code-points 101
 user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q6
 loss-priority low code-points 110
 user@host# set classifiers inet-precedence inet_prec_4 forwarding-class q7
 loss-priority low code-points 111

7. Map forwarding classes to CoS queues.

 [edit class-of-service]
 user@host# set forwarding-classes queue 0 q0
 user@host# set forwarding-classes queue 1 q1
 user@host# set forwarding-classes queue 2 q2
 user@host# set forwarding-classes queue 3 q3
 user@host# set forwarding-classes queue 4 q4
 user@host# set forwarding-classes queue 5 q5
 user@host# set forwarding-classes queue 6 q6
 user@host# set forwarding-classes queue 7 q7

8. Configure traffic control profiles.

 [edit class-of-service]
 user@host# set traffic-control-profiles 1 scheduler-map sched_map
 user@host# set traffic-control-profiles 1 shaping-rate 200m

 [edit class-of-service]
 user@host# set interfaces reth0 unit 0 classifiers inet-precedence inet_prec_4

10. Apply a traffic scheduling profile to the interface.

 [edit class-of-service]
 user@host# set interfaces reth1 unit 0 output-traffic-control-profile 1
11. Configure the CoS schedulers.

```bash
[edit class-of-service]
user@host# set scheduler-maps sched_map forwarding-class q0 scheduler S0
user@host# set scheduler-maps sched_map forwarding-class q1 scheduler S1
user@host# set scheduler-maps sched_map forwarding-class q2 scheduler S2
user@host# set scheduler-maps sched_map forwarding-class q3 scheduler S3
user@host# set scheduler-maps sched_map forwarding-class q4 scheduler S4
user@host# set scheduler-maps sched_map forwarding-class q5 scheduler S5
user@host# set scheduler-maps sched_map forwarding-class q6 scheduler S6
user@host# set scheduler-maps sched_map forwarding-class q7 scheduler S7
user@host# set schedulers S0 transmit-rate percent 20
user@host# set schedulers S1 transmit-rate percent 5
user@host# set schedulers S2 transmit-rate percent 5
user@host# set schedulers S3 transmit-rate percent 10
user@host# set schedulers S4 transmit-rate percent 10
user@host# set schedulers S5 transmit-rate percent 10
user@host# set schedulers S6 transmit-rate percent 10
user@host# set schedulers S7 transmit-rate percent 30
```

Results

From configuration mode, confirm your configuration by entering the `show class-of-service` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```bash
[edit]
user@host# show class-of-service
classifiers {
  inet-precedence inet_prec_4 {
    forwarding-class q0 {
      loss-priority low code-points 000;
    }
    forwarding-class q2 {
      loss-priority low code-points 010;
    }
    forwarding-class q3 {
      loss-priority low code-points 011;
    }
    forwarding-class q1 {
      loss-priority low code-points 001;
    }
    forwarding-class q4 {
      loss-priority low code-points 100;
    }
    forwarding-class q5 {
      loss-priority low code-points 101;
    }
    forwarding-class q6 {
      loss-priority low code-points 110;
    }
    forwarding-class q7 {
```
loss-priority low code-points 111;
}
}
}
}
}
forwarding-classes {
 queue 0 q0;
 queue 1 q1;
 queue 2 q2;
 queue 3 q3;
 queue 4 q4;
 queue 5 q5;
 queue 6 q6;
 queue 7 q7;
}
traffic-control-profiles {
 1 {
 scheduler-map sched_map;
 shaping-rate 200m;
 }
}
}
interfaces {
 reth0 {
 unit 0 {
 classifiers {
 inet-precedence inet_prec_4;
 }
 }
 }
 reth1 {
 unit 0 {
 output-traffic-control-profile 1;
 }
 }
 }
}
scheduler-maps {
 sched_map {
 forwarding-class q0 scheduler S0;
 forwarding-class q1 scheduler S1;
 forwarding-class q2 scheduler S2;
 forwarding-class q3 scheduler S3;
 forwarding-class q4 scheduler S4;
 forwarding-class q5 scheduler S5;
 forwarding-class q6 scheduler S6;
 forwarding-class q7 scheduler S7;
 }
}
schedulers {
 S0 {
 transmit-rate percent 20;
 }
 S1 {
 transmit-rate percent 5;
 }
 S2 {
 transmit-rate percent 5;
 }
}
If you are done configuring the device, enter **commit** from configuration mode.

To restart chassis control, enter **restart chassis-control** command from operational mode.

NOTE: When you execute the **restart chassis-control** command all the FRU cards on the box are reset, thus impacting traffic. Changing the number of queues must be executed during a scheduled downtime. It takes 5-10 minutes for the cards to come online after the **restart chassis-control** command is executed.

Verification

Verifying the Eight-Queue COS Configuration

Purpose
Verify that eight-queue CoS is enabled properly.

Action
From the operational mode, enter the following commands:

- `show interfaces ge-5/1/14 extensive`
- `show interfaces queue ge-5/1/14`
- `show class-of-service forwarding-class`
- `show class-of-service interface ge-5/1/14`

Related Documentation
- Understanding Chassis Cluster Control Plane and Control Links on page 113
- Preparing Your Equipment for Chassis Cluster Formation on page 61
- SRX Series Chassis Cluster Configuration Overview on page 62
- Understanding SRX Series Chassis Cluster Slot Numbering and Physical Port and Logical Interface Naming on page 79
Verifying a Chassis Cluster Configuration

Supported Platforms SRX Series, vSRX

Purpose Display chassis cluster verification options.

Action From the CLI, enter the `show chassis cluster ?` command:

```
{primary:node1}
user@host> show chassis cluster ?
Possible completions:
    interfaces           Display chassis-cluster interfaces
    statistics           Display chassis-cluster traffic statistics
    status               Display chassis-cluster status
```

Related Documentation
- Verifying Chassis Cluster Statistics on page 161
- Clearing Chassis Cluster Statistics on page 163

Verifying Chassis Cluster Statistics

Supported Platforms SRX Series, vSRX

Purpose Display information about chassis cluster services and interfaces.

Action From the CLI, enter the `show chassis cluster statistics` command:

```
{primary:node1}
user@host> show chassis cluster statistics
```

Control link statistics:
- Control link 0:
 - Heartbeat packets sent: 798
 - Heartbeat packets received: 784

Fabric link statistics:
- Child link 0
 - Probes sent: 793
 - Probes received: 0

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Firewall user authentication 0 0
MGCP ALG 0 0
H323 ALG 0 0
SIP ALG 0 0
SCCP ALG 0 0
PPTP ALG 0 0
RTSP ALG 0 0

{primary:node1}
user@host> show chassis cluster statistics

Control link statistics:
 Control link 0:
 Heartbeat packets sent: 258689
 Heartbeat packets received: 258684
 Control link 1:
 Heartbeat packets sent: 258689
 Heartbeat packets received: 258684

Fabric link statistics:
 Child link 0
 Probes sent: 258681
 Probes received: 258681
 Child link 1
 Probes sent: 258501
 Probes received: 258501

Services Synchronized:

 Service name RTOs sent RTOs received
 Translation context 0 0
 Incoming NAT 0 0
 Resource manager 0 0
 Session create 1 0
 Session close 1 0
 Session change 0 0
 Gate create 0 0
 Session ageout refresh requests 0 0
 Session ageout refresh replies 0 0
 IPSec VPN 0 0
 Firewall user authentication 0 0
 MGCP ALG 0 0
 H323 ALG 0 0
 SIP ALG 0 0
 SCCP ALG 0 0
 PPTP ALG 0 0
 RTSP ALG 0 0
 RPC ALG 0 0
 RAS ALG 0 0
 MAC address learning 0 0
 GPRS GTP 0 0

{primary:node1}
user@host> show chassis cluster statistics

Control link statistics:
 Control link 0:
 Heartbeat packets sent: 82371
 Heartbeat packets received: 82321
 Control link 1:
 Heartbeat packets sent: 0
 Heartbeat packets received: 0
Clearing Chassis Cluster Statistics

Supported Platforms SRX Series, vSRX

To clear displayed information about chassis cluster services and interfaces, enter the `clear chassis cluster statistics` command from the CLI:

```
{primary:node1}
user@host> clear chassis cluster statistics

Cleared control-plane statistics
Cleared data-plane statistics
```

Related Documentation
- Verifying a Chassis Cluster Configuration on page 161
- Verifying Chassis Cluster Statistics on page 161
PART 3

Managing Chassis Cluster Operations

- Configuring Chassis Cluster Dual Control Links for Managing Control Traffic on page 167
- Monitoring Chassis Cluster on page 175
- Configuring Chassis Cluster Failover Parameters on page 225
- Managing Chassis Cluster Redundancy Group Failover on page 231
- Configuring Chassis Cluster Dual Fabric Links to Increase Redundancy and Performance on page 241
- Configuring Route Advertisement over Redundant Ethernet Interfaces in a Chassis Cluster on page 249
- Configuring Redundant Ethernet LAG Interfaces for Increasing High Availability and Overall Throughput on page 255
- Simplifying Chassis Cluster Management on page 275
CHAPTER 12

Configuring Chassis Cluster Dual Control Links for Managing Control Traffic

- Understanding Chassis Cluster Dual Control Links on page 167
- Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster on page 168
- Example: Configuring Chassis Cluster Control Ports for Dual Control Links on page 169
- Upgrading the Second Routing Engine When Using Chassis Cluster Dual Control Links on SRX5600 and SRX5800 Devices on page 172

Understanding Chassis Cluster Dual Control Links

Supported Platforms
SRX5600, SRX5800

Dual control links, where two pairs of control link interfaces are connected between each device in a cluster, are supported for the SRX5600 and SRX5800 Services Gateways. Having two control links helps to avoid a possible single point of failure.

For the SRX5600 and SRX5800 Services Gateways, this functionality requires a second Routing Engine, as well as a second Switch Control Board (SCB) to house the Routing Engine, to be installed on each device in the cluster. The purpose of the second Routing Engine is only to initialize the switch on the SCB.

NOTE: For the SRX5400 Services Gateways, dual control is not supported due to limited slots.

NOTE: Dual control link functionality is not supported on SRX4100 and SRX4200 devices.

NOTE: For the SRX3000 line, this functionality requires an SRX Clustering Module (SCM) to be installed on each device in the cluster. Although the SCM fits in the Routing Engine slot, it is not a Routing Engine. SRX3000 line devices do not support a second Routing Engine. The purpose of the SCM is to initialize the second control link.
For the SRX5000 line, the second Routing Engine must be running Junos OS Release 10.0 or later.

The second Routing Engine, to be installed on SRX5000 line devices only, does not provide backup functionality. It does not need to be upgraded, even when there is a software upgrade of the master Routing Engine on the same node. Note the following conditions:

- You cannot run the CLI or enter configuration mode on the second Routing Engine.
- You do not need to set the chassis ID and cluster ID on the second Routing Engine.
- You need only a console connection to the second Routing Engine. (A console connection is not needed unless you want to check that the second Routing Engine was booted up or to upgrade a software image.)
- You cannot log in to the second Routing Engine from the master Routing Engine.

As long as the first Routing Engine is installed (even if it is rebooting or failing), the second Routing Engine cannot take over the chassis mastership; that is, it cannot control all the hardware on the chassis. The second Routing Engine can only become the master when the master Routing Engine is not present.

Be cautious and judicious in your use of redundancy group 0 manual failovers. A redundancy group 0 failover implies a Routing Engine (RE) failover, in which case all processes running on the primary node are killed and then spawned on the new master Routing Engine (RE). This failover could result in loss of state, such as routing state, and degrade performance by introducing system churn.

Related Documentation
- Connecting SRX Series Devices to Create a Chassis Cluster on page 71
- Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster on page 168
- Example: Configuring Chassis Cluster Control Ports for Dual Control Links on page 169

Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster

Supported Platforms SRX5600, SRX5800

For SRX5600 and SRX5800 devices, you can connect two control links between the two devices, effectively reducing the chance of control link failure.

Dual control links are not supported on SRX5400 due to the limited number of slots.
For SRX5600 and SRX5800 devices, connect two pairs of the same type of Ethernet ports. For each device, you can use ports on the same Services Processing Card (SPC), but we recommend that they be on two different SPCs to provide high availability. Figure 43 on page 169 shows a pair of SRX5800 devices with dual control links connected. In this example, control port 0 and control port 1 are connected on different SPCs.

Figure 43: Connecting Dual Control Links (SRX5800 Devices)

![Diagram of SRX5800 devices with dual control links connected.]

NOTE: For SRX5600 and SRX5800 devices, you must connect control port 0 on one node to control port 0 on the other node and, likewise, control port 1 to control port 1. If you connect control port 0 to control port 1, the nodes cannot receive heartbeat packets across the control links.

Related Documentation
- Understanding Chassis Cluster Dual Control Links on page 167
- Example: Configuring Chassis Cluster Control Ports for Dual Control Links on page 169

Example: Configuring Chassis Cluster Control Ports for Dual Control Links

Supported Platforms SRX5600, SRX5800

This example shows how to configure chassis cluster control ports for use as dual control links on SRX5600, and SRX5800 devices. You need to configure the control ports that you will use on each device to set up the control links.

NOTE: Dual control links are not supported on an SRX5400 device due to the limited number of slots.

- Requirements on page 170
- Overview on page 170
- Configuration on page 170
- Verification on page 171
Requirements

Before you begin:

- Understand chassis cluster control links. See "Understanding Chassis Cluster Control Plane and Control Links" on page 113.
- Physically connect the control ports on the devices. See “Connecting SRX Series Devices to Create a Chassis Cluster” on page 71.

Overview

By default, all control ports on SRX5600 and SRX5800 devices are disabled. After connecting the control ports, configuring the control ports, and establishing the chassis cluster, the control links are set up.

This example configures control ports with the following FPCs and ports as the dual control links:

- FPC 4, port 0
- FPC 10, port 0
- FPC 6, port 1
- FPC 12, port 1

Configuration

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[primary:node0][edit]
set chassis cluster control-ports fpc 4 port 0
set chassis cluster control-ports fpc 10 port 0
set chassis cluster control-ports fpc 6 port 1
set chassis cluster control-ports fpc 12 port 1
```

Step-by-Step Procedure

To configure control ports for use as dual control links for the chassis cluster:

- Specify the control ports.

```
[primary:node0][edit]
user@host# set chassis cluster control-ports fpc 4 port 0
[primary:node0][edit]
user@host# set chassis cluster control-ports fpc 10 port 0
[primary:node0][edit]
user@host# set chassis cluster control-ports fpc 6 port 1
[primary:node0][edit]
user@host# set chassis cluster control-ports fpc 12 port 1
```
Results

From configuration mode, confirm your configuration by entering the `show chassis cluster` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
[primary:node0][edit]
user@host# show chassis cluster
...
control-ports {
  fpc 4 port 0;
  fpc 6 port 1;
  fpc 10 port 0;
  fpc 12 port 1;
}
...
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying the Chassis Cluster Status

Purpose

Verify the chassis cluster status.

Action

From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status
Cluster ID: 1
Node     Priority     Status    Preempt  Manual failover
Redundancy group: 0 , Failover count: 1
  node0    100         primary   no       no
  node1    1           secondary no       no
Redundancy group: 1 , Failover count: 1
  node0    0           primary   no       no
  node1    0           secondary no       no
```

Meaning

Use the `show chassis cluster status` command to confirm that the devices in the chassis cluster are communicating with each other. The chassis cluster is functioning properly, as one device is the primary node and the other is the secondary node.

Related Documentation

- Understanding Chassis Cluster Dual Control Links on page 167
- Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster on page 168
- Verifying Chassis Cluster Control Plane Statistics on page 115
Upgrading the Second Routing Engine When Using Chassis Cluster Dual Control Links on SRX5600 and SRX5800 Devices

Supported Platforms
SRX5600, SRX5800, vSRX

For SRX5600 and SRX5800 devices, a second Routing Engine is required for each device in a cluster if you are using dual control links. The second Routing Engine does not provide backup functionality; its purpose is only to initialize the switch on the Switch Control Board (SCB). The second Routing Engine must be running Junos OS Release 12.1X47-D35, 12.3X48-D30, 15.1X49-D40 or later. For more information, see knowledge base article KB30371.

NOTE: Starting from Junos OS Release 15.1X49-D70 and Junos OS Release 17.3R1, you can use the `show chassis hardware` command to see the serial number and the hardware version details of the second Routing Engine.

NOTE: For the SRX5400 Services Gateways, dual control is not supported due to limited slots.

Because you cannot run the CLI or enter configuration mode on the second Routing Engine, you cannot upgrade the Junos OS image with the usual upgrade commands. Instead, use the master Routing Engine to create a bootable USB storage device, which you can then use to install a software image on the second Routing Engine.

To upgrade the software image on the second Routing Engine:

1. Use FTP to copy the installation media into the `/var/tmp` directory of the master Routing Engine.

2. Insert a USB storage device into the USB port on the master Routing Engine.

3. In the UNIX shell, navigate to the `/var/tmp` directory:
   ```
   start shell
cd /var/tmp
   ```

4. Log in as root or superuser:
   ```
   su [enter]
   password: [enter SU password]
   ```

5. Issue the following command:
   ```
   dd if=installMedia of=/dev/externalDrive bs=1m
   ```
where

- **externalDrive**—Refers to the removable media name. For example, the removable media name on an SRX5000 line device is da0 for both Routing Engines.
- **installMedia**—Refers to the installation media downloaded into the /var/tmp directory. For example, install-media-srx5000-10.1R1-domestic.tgz.

The following code example can be used to write the image that you copied to the master Routing Engine in step 1 onto the USB storage device:

```
dd if=install-media-srx5000-10.1R1-domestic.tgz of=/dev/da0 bs=1m
```

6. Log out as root or superuser:

 `exit`

7. After the software image is written to the USB storage device, remove the device and insert it into the USB port on the second Routing Engine.

8. Move the console connection from the master Routing Engine to the second Routing Engine, if you do not already have a connection.

9. Reboot the second Routing Engine. Issue the following command (for Junos OS Release 15.1X49-D65 and earlier):

   ```
   # reboot
   ```

Starting with Junos OS Release 15.1X49-D70, issue the following command:

```
login : root
root % reboot
```

- When the following system output appears, press **y**:

  ```
  WARNING: The installation will erase the contents of your disks.
  Do you wish to continue (y/n)?
  ```

- When the following system output appears, remove the USB storage device and press Enter:

  ```
  Eject the installation media and hit [Enter] to reboot?
  ```

Related Documentation

- Understanding Chassis Cluster Control Plane and Control Links on page 113
- Understanding Chassis Cluster Dual Control Links on page 167
- Example: Configuring Chassis Cluster Control Ports for Dual Control Links on page 169
- Verifying Chassis Cluster Control Plane Statistics on page 115
Understanding Chassis Cluster Redundancy Group Interface Monitoring

Supported Platforms

- SRX Series, vSRX

For a redundancy group to automatically failover to another node, its interfaces must be monitored. When you configure a redundancy group, you can specify a set of interfaces that the redundancy group is to monitor for status (or “health”) to determine whether the interface is up or down. A monitored interface can be a child interface of any of its redundant Ethernet interfaces. When you configure an interface for a redundancy group to monitor, you give it a weight.

Every redundancy group has a threshold tolerance value initially set to 255. When an interface monitored by a redundancy group becomes unavailable, its weight is subtracted from the redundancy group's threshold. When a redundancy group’s threshold reaches 0, it fails over to the other node. For example, if redundancy group 1 was primary on node 0, on the threshold-crossing event, redundancy group 1 becomes primary on node 1. In this case, all the child interfaces of redundancy group 1’s redundant Ethernet interfaces begin handling traffic.

To check the interface weight, use the below commands:

- show chassis cluster information
- show chassis cluster interfaces
NOTE: We do not recommend configuring data plane modules such as interface monitoring and IP monitoring on Redundancy Group 0 (RG0) for SRX Series devices in a chassis cluster.

CAUTION: Be cautious and judicious in your use of redundancy group 0 manual failovers. A redundancy group 0 failover implies a Routing Engine (RE) failover, in which case all processes running on the primary node are killed and then spawned on the new master Routing Engine (RE). This failover could result in loss of state, such as routing state, and degrade performance by introducing system churn.

A redundancy group failover occurs because the cumulative weight of the redundancy group’s monitored interfaces has brought its threshold value to 0. When the monitored interfaces of a redundancy group on both nodes reach their thresholds at the same time, the redundancy group is primary on the node with the lower node ID, in this case node 0.

NOTE:

• If you want to dampen the failovers occurring because of interface monitoring failures, use the hold-down-interval statement.

• If a failover occurs on Redundancy Group 0 (RG0), the interface monitoring on the RG0 secondary is disabled for 30 seconds. This prevents failover of other redundancy groups along with RG0 failover.

Related Documentation

• Example: Configuring Chassis Cluster Interface Monitoring on page 176
• Understanding Chassis Cluster Redundancy Groups on page 119
• Example: Configuring Chassis Cluster Redundancy Groups on page 123

Example: Configuring Chassis Cluster Interface Monitoring

Supported Platforms SRX Series, vSRX

This example shows how to specify that an interface be monitored by a specific redundancy group for automatic failover to another node. You assign a weight to the interface to be monitored also shows how to verify the process of the remaining threshold of a monitoring interface by configuring two interfaces from each node and mapping them to redundancy groups.

• Requirements on page 177
• Overview on page 177
• Configuration on page 178
• Verification on page 182
Requirements

Before you begin, create a redundancy group. See “Example: Configuring Chassis Cluster Redundancy Groups” on page 123.

Overview

To retrieve the remaining redundancy group threshold after a monitoring interface is down, you can configure your system to monitor the health of the interfaces belonging to a redundancy group. When you assign a weight to an interface to be monitored, the system monitors the interface for availability. If a physical interface fails, the weight is deducted from the corresponding redundancy group’s threshold. Every redundancy group has a threshold of 255. If the threshold hits 0, a failover is triggered, even if the redundancy group is in manual failover mode and the preempt option is not enabled.

In this example, you check the process of the remaining threshold of a monitoring interface by configuring two interfaces from each node and mapping them to Redundancy Group 1 (RG1), each with different weights. You use 130 and 140 for node 0 interfaces and 150 and 120 for node 1 interfaces. You configure one interface from each node and map the interfaces to Redundancy Group 2 (RG2), each with default weight of 255.
Figure 44 on page 178 illustrates the network topology used in this example.

Figure 44: SRX Series Chassis Cluster Interface Monitoring Topology Example

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `edit` hierarchy level, and then enter `commit` from configuration mode.

```
set chassis cluster traceoptions flag all
set chassis cluster reth-count 3
set chassis cluster redundancy-group 0 node 0 priority 254
set chassis cluster redundancy-group 0 node 1 priority 1
set chassis cluster redundancy-group 1 node 0 priority 200
set chassis cluster redundancy-group 1 node 1 priority 100
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/1 weight 130
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/2 weight 140
set chassis cluster redundancy-group 1 interface-monitor ge-8/0/1 weight 150
set chassis cluster redundancy-group 1 interface-monitor ge-8/0/2 weight 120
set chassis cluster redundancy-group 2 node 0 priority 200
set chassis cluster redundancy-group 2 node 1 priority 100
set chassis cluster redundancy-group 2 interface-monitor ge-0/0/3 weight 255
set chassis cluster redundancy-group 2 interface-monitor ge-8/0/3 weight 255
set interfaces ge-0/0/1 gigether-options redundant-parent reth0
set interfaces ge-0/0/2 gigether-options redundant-parent reth1
set interfaces ge-0/0/3 gigether-options redundant-parent reth2
set interfaces ge-8/0/1 gigether-options redundant-parent reth0
set interfaces ge-8/0/2 gigether-options redundant-parent reth1
set interfaces ge-8/0/3 gigether-options redundant-parent reth2
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth2 unit 0 family inet address 10.1.1.1/24
set interfaces reth1 redundant-ether-options redundancy-group 1
set interfaces reth1 unit 0 family inet address 10.2.2.2/24
set interfaces reth2 redundant-ether-options redundancy-group 2
set interfaces reth2 unit 0 family inet address 10.3.3.3/24
```
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the Junos OS CLI User Guide.

To configure chassis cluster interface monitoring:

1. Specify the traceoptions for chassis cluster.

   ```
   [edit chassis cluster]
   user@host# set traceoptions flag all
   ```

2. Specify the number of redundant Ethernet interfaces.

   ```
   [edit chassis cluster]
   user@host# set reth-count 3
   ```

3. Set up redundancy group 0 for the Routing Engine failover properties, and set up RG1 and RG2 (all interfaces are in one redundancy group in this example) to define the failover properties for the redundant Ethernet interfaces.

   ```
   [edit chassis cluster]
   user@host# set redundancy-group 0 node 0 priority 254
   user@host# set redundancy-group 0 node 1 priority 1
   user@host# set redundancy-group 1 node 0 priority 200
   user@host# set redundancy-group 1 node 1 priority 100
   user@host# set redundancy-group 2 node 0 priority 200
   user@host# set redundancy-group 2 node 1 priority 100
   ```

4. Set up interface monitoring to monitor the health of the interfaces and trigger redundancy group failover.

 NOTE: We do not recommend interface monitoring for RG0, because it causes the control plane to switch from one node to another node in case interface flap occurs.

   ```
   [edit chassis cluster]
   user@host# Set redundancy-group 1 interface-monitor ge-0/0/1 weight 130
   user@host# Set redundancy-group 1 interface-monitor ge-0/0/2 weight 140
   user@host# Set redundancy-group 1 interface-monitor ge-8/0/1 weight 150
   user@host# Set redundancy-group 1 interface-monitor ge-0/0/2 weight 120
   user@host# Set redundancy-group 2 interface-monitor ge-0/0/3 weight 255
   user@host# Set redundancy-group 2 interface-monitor ge-8/0/3 weight 255
   ```

 NOTE: Interface failover only occurs after the weight reaches zero.

5. Set up the redundant Ethernet (reth) interfaces and assign them to a zone.

   ```
   [edit interfaces]
user@host# Set ge-0/0/1 gigether-options redundant-parent reth0
user@host# Set ge-0/0/2 gigether-options redundant-parent reth1
user@host# Set ge-0/0/3 gigether-options redundant-parent reth2
user@host# Set ge-8/0/1 gigether-options redundant-parent reth0
user@host# Set ge-8/0/2 gigether-options redundant-parent reth1
user@host# Set ge-8/0/3 gigether-options redundant-parent reth2
user@host# Set reth0 redundant-ether-options redundancy-group 1
user@host# Set reth1 unit 0 family inet address 10.1.1.1/24
user@host# Set reth1 redundant-ether-options redundancy-group 1
user@host# Set reth2 unit 0 family inet address 10.2.2.2/24
user@host# Set reth2 redundant-ether-options redundancy-group 2
user@host# Set reth2 unit 0 family inet address 10.3.3.3/24

Results  From configuration mode, confirm your configuration by entering the `show chassis` and `show interfaces` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show chassis
cluster {
 traceoptions {
 flag all;
 }
 reth-count 3;
 node 0; ## Warning: 'node' is deprecated
 node 1; ## Warning: 'node' is deprecated
 redundancy-group 0 {
 node 0 priority 254;
 node 1 priority 1;
 }
 redundancy-group 1 {
 node 0 priority 200;
 node 1 priority 100;
 interface-monitor {
 ge-0/0/1 weight 130;
 ge-0/0/2 weight 140;
 ge-8/0/1 weight 150;
 ge-8/0/2 weight 120;
 }
 }
 redundancy-group 2 {
 node 0 priority 200;
 node 1 priority 100;
 interface-monitor {
 ge-0/0/3 weight 255;
 ge-8/0/3 weight 255;
 }
 }
}
[edit]
user@host# show interfaces
ge-0/0/1 {
 gigether-options {
 redundant-parent reth0;
```
ge-0/0/2 {
  gigether-options {
    redundant-parent reth1;
  }
}

giethers {
  redundant-parent {
    ge-0/0/2 {
      gigether-options {
        redundant-parent reth1;
      }
    }
    ge-0/0/3 {
      gigether-options {
        redundant-parent reth2;
      }
    }
    ge-8/0/1 {
      gigether-options {
        redundant-parent reth0;
      }
    }
    ge-8/0/2 {
      gigether-options {
        redundant-parent reth1;
      }
    }
    ge-8/0/3 {
      gigether-options {
        redundant-parent reth2;
      }
    }
  }
  unit0 {
    family inet {
      address 10.1.1.1/24;
    }
  } reth0 {
    redundant-ether-options {
      redundancy-group 1;
    }
    unit 0 {
      family inet {
        address 10.1.1.1/24;
      }
    }
  } reth1 {
    redundant-ether-options {
      redundancy-group 1;
    }
    unit 0 {
      family inet {
        address 10.2.2.2/24;
      }
    }
  } reth2 {
    redundant-ether-options {
      redundancy-group 2;
    }
    unit 0 {
      family inet {
        address 10.3.3.3/24;
      }
    }
If you are done configuring the device, enter **commit** from configuration mode.

**Verification**

The following sections walk you through the process of verifying and (in some cases) troubleshooting the interface status. The process shows you how to check the status of each interface in the redundancy group, check them again after they have been disabled, and looks for details about each interface, until you have circled through all interfaces in the redundancy group.

In this example, you verify the process of the remaining threshold of a monitoring interface by configuring two interfaces from each node and mapping them to RG1, each with different weights. You use 130 and 140 for node 0 interfaces and 150 and 120 for node 1 interfaces. You configure one interface from each node and map the interfaces to RG2, each with the default weight of 255.

- Verifying Chassis Cluster Status on page 183
- Verifying Chassis Cluster Interfaces on page 183
- Verifying Chassis Cluster Information on page 184
- Verifying Interface ge-0/0/1 Status After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130 on page 186
- Verifying Chassis Cluster Status After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130 on page 186
- Verifying Chassis Cluster Interfaces After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130 on page 187
- Verifying Chassis Cluster Information After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130 on page 188
- Verifying Interface ge-0/0/2 Is Disabled on page 189
- Verifying Chassis Cluster Status After Disabling Interface ge-0/0/2 on page 190
- Verifying Chassis Cluster Interfaces After Disabling Interface ge-0/0/2 on page 190
- Verifying Chassis Cluster Information After Disabling Interface ge-0/0/2 on page 191
- Verifying Interface Status After Disabling ge-0/0/3 on page 193
- Verifying Chassis Cluster Status After Disabling Interface ge-0/0/3 on page 193
- Verifying Chassis Cluster Interfaces After Disabling Interface ge-0/0/3 on page 194
- Verifying Chassis Cluster Information After Disabling Interface ge-0/0/3 on page 195
- Verifying That Interface ge-0/0/2 Is Enabled on page 196
- Verifying Chassis Cluster Status After Enabling Interface ge-0/0/2 on page 197
- Verifying Chassis Cluster Interfaces After Enabling Interface ge-0/0/2 on page 197
- Verifying Chassis Cluster Information After Enabling Interface ge-0/0/2 on page 198
- Verifying Chassis Cluster RG2 Preempt on page 200
- Verifying Chassis Cluster Status After Preempting RG2 on page 200
Verifying That Interface ge-0/0/3 Is Enabled on page 201

Verifying Chassis Cluster Status After Enabling Interface ge-0/0/3 on page 201

Verifying Chassis Cluster Interfaces After Enabling Interface ge-0/0/3 on page 202

Verifying Chassis Cluster Information After Enabling Interface ge-0/0/3 on page 203

Verifying Chassis Cluster Status

**Purpose**
Verify the chassis cluster status, failover status, and redundancy group information.

**Action**
From operational mode, enter the `show chassis cluster status` command.

{primary:node0}

```
user@host> show chassis cluster status
```

Monitor Failure codes:
- CS  Cold Sync monitoring
- FL  Fabric Connection monitoring
- GR  GRES monitoring
- HW  Hardware monitoring
- IF  Interface monitoring
- IP  IP monitoring
- LB  Loopback monitoring
- MB  Mbuf monitoring
- NH  Nexthop monitoring
- NP  NPC monitoring
- SP  SPU monitoring
- SM  Schedule monitoring
- CF  Config Sync monitoring

Cluster ID: 2

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 1, Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 2, Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

**Meaning**
Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

Verifying Chassis Cluster Interfaces

**Purpose**
Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

**Action**
From operational mode, enter the `show chassis cluster interfaces` command.

{primary:node0}

```
user@host> show chassis cluster interfaces
```

Copyright © 2017, Juniper Networks, Inc.
Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status (Physical/Monitored)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab0</td>
<td>ge-8/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-8/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-0/0/0</td>
<td>Up / Up</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth2</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-8/0/2</td>
<td>120</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/1</td>
<td>150</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/2</td>
<td>140</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>130</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/3</td>
<td>255</td>
<td>Up</td>
<td>2</td>
</tr>
<tr>
<td>ge-0/0/3</td>
<td>255</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

Meaning  The sample output confirms that monitoring interfaces are up and that the weight of each interface being monitored is displayed correctly as configured. These values do not change if the interface goes up or down. The weights only change for the redundant group and can be viewed when you use the show chassis cluster information command.

Verifying Chassis Cluster Information

Purpose Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

Action From operational mode, enter the show chassis cluster information command.

```
{primary:node0}
user@host> show chassis cluster information
node0:
--
Redundancy Group Information:
```
Redundancy Group 0, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:27</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 22:56:34</td>
<td>secondary</td>
<td>primary</td>
<td>Better priority (254/1)</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:12</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
- Current LED color: Green
- Last LED change reason: No failures

node1:

Redundancy Group Information:

Redundancy Group 0, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:34</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
- Current LED color: Green
- Last LED change reason: No failures

Meaning
The sample output confirms that node 0 and node 1 are healthy, and the green LED on the device indicates that there are no failures. Also, the default weight of the redundancy group (255) is displayed. The default weight is deducted whenever an interface mapped to the corresponding redundancy group goes down.

Refer to subsequent verification sections to see how the redundancy group value varies when a monitoring interface goes down or comes up.
Verifying Interface ge-0/0/1 Status After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130

Purpose
Verify that the interface ge-0/0/1 is disabled on node 0.

Action
From configuration mode, enter the `set interface ge-0/0/1 disable` command.

```
{primary:node0}
user@host# set interface ge-0/0/1 disable
user@host# commit

node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

{primary:node0}
user@host# show interfaces ge-0/0/1
disable;
gigether-options {
 redundant-parent reth0;
}
```

Meaning
The sample output confirms that interface ge-0/0/1 is disabled.

Verifying Chassis Cluster Status After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status

Monitor Failure codes:
 CS Cold Sync monitoring FL Fabric Connection monitoring
 GR GRES monitoring HW Hardware monitoring
 IF Interface monitoring IP IP monitoring
 LB Loopback monitoring MB Mbuf monitoring
 NH Nexthop monitoring NP NPC monitoring
 SP SPU monitoring SM Schedule monitoring
 CF Config Sync monitoring

Cluster ID: 2

Node Priority Status Preempt Manual Monitor-failures

Redundancy group: 0 , Failover count: 1
node0 254 primary no no None
node1 1 secondary no no None
```
Meaning

Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

Verifying Chassis Cluster Interfaces After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130

Purpose

Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

Action

From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}
user@host> show chassis cluster interfaces
Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status (Physical/Monitored)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab0</td>
<td>ge-8/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-8/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth2</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-8/0/2</td>
<td>120</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/1</td>
<td>150</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/2</td>
<td>140</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>
Meaning The sample output confirms that monitoring interface ge-0/0/1 is down.

Verifying Chassis Cluster Information After Disabling Interface ge-0/0/1 of RG1 in Node 0 with a Weight of 130

Purpose Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

Action From operational mode, enter the `show chassis cluster information` command.

{primary:node0}

```
user@host> show chassis cluster information
node0:
```

Redundancy Group Information:

```
Redundancy Group 0 , Current State: primary, Weight: 255

Time            From           To             Reason
Feb 24 22:56:27 hold           secondary      Hold timer expired
Feb 24 22:56:34 secondary      primary        Better priority (254/1)
```

Redundancy Group 1 , Current State: primary, Weight: 125

```
Time            From           To             Reason
Feb 24 23:16:12 hold           secondary      Hold timer expired
Feb 24 23:16:12 secondary      primary        Remote yield (0/0)
```

Redundancy Group 2 , Current State: primary, Weight: 255

```
Time            From           To             Reason
Feb 24 23:16:12 hold           secondary      Hold timer expired
Feb 24 23:16:13 secondary      primary        Remote yield (0/0)
```

Chassis cluster LED information:

```
Current LED color: Green
Last LED change reason: No failures
```

Failure Information:

```
Interface Monitoring Failure Information:
Redundancy Group 1, Monitoring status: Unhealthy
Interface Status
ge-0/0/1 Down
```

node1:

Redundancy Group Information:

```
Redundancy Group 0 , Current State: secondary, Weight: 255
```
Time From To Reason
Feb 24 22:56:34 hold secondary Hold timer expired

Redundancy Group 1, Current State: secondary, Weight: 255

Time From To Reason
Feb 24 23:16:10 hold secondary Hold timer expired

Redundancy Group 2, Current State: secondary, Weight: 255

Time From To Reason
Feb 24 23:16:10 hold secondary Hold timer expired

Chassis cluster LED information:
Current LED color: Amber
Last LED change reason: Monitored objects are down

Meaning The sample output confirms that in node 0, the RG1 weight is reduced to 125 (that is, 255 minus 130) because monitoring interface ge-0/0/1 (weight of 130) went down. The monitoring status is unhealthy, the device LED is amber, and the interface status of ge-0/0/1 is down.

NOTE: If interface ge-0/0/1 is brought back up, the weight of RG1 in node 0 becomes 255. Conversely, if interface ge-0/0/2 is also disabled, the weight of RG1 in node 0 becomes 0 or less (in this example, 125 minus 140 = -15) and triggers failover, as indicated in the next verification section.

Verifying Interface ge-0/0/2 Is Disabled

Purpose Verify that interface ge-0/0/2 is disabled on node 0.

Action From configuration mode, enter the set interface ge-0/0/2 disable command.

```
{primary:node0}
user@host# set interface ge-0/0/2 disable
user@host# commit

node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

{primary:node0}
user@host# show interfaces ge-0/0/2 disable;
gigether-options {
```
Meaning The sample output confirms that interface ge-0/0/2 is disabled.

Verifying Chassis Cluster Status After Disabling Interface ge-0/0/2

Purpose Verify the chassis cluster status, failover status, and redundancy group information.

Action From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status
```

Monitor Failure codes:
- CS Cold Sync monitoring
- FL Fabric Connection monitoring
- GR GRES monitoring
- HW Hardware monitoring
- IF Interface monitoring
- IP IP monitoring
- LB Loopback monitoring
- MB Mbuf monitoring
- NH Nexthop monitoring
- NP NPC monitoring
- SP SPU monitoring
- SM Schedule monitoring
- CF Config Sync monitoring

Cluster ID: 2

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 1 , Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>0</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>IF</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Meaning Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node. On RG1, you see interface failure, because both interfaces mapped to RG1 on node 0 failed during interface monitoring.

Verifying Chassis Cluster Interfaces After Disabling Interface ge-0/0/2

Purpose Verify information about chassis cluster interfaces.

Action From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}
user@host> show chassis cluster interfaces
```
Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status (Physical/Monitored)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/0</td>
<td>Up/Up</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-0/0/0</td>
<td>Up/Up</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth2</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-8/0/2</td>
<td>120</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/1</td>
<td>150</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/2</td>
<td>140</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>130</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/3</td>
<td>255</td>
<td>Up</td>
<td>2</td>
</tr>
<tr>
<td>ge-0/0/3</td>
<td>255</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

Meaning

The sample output confirms that monitoring interfaces ge-0/0/1 and ge-0/0/2 are down.

Verifying Chassis Cluster Information After Disabling Interface ge-0/0/2

Purpose

Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

Action

From operational mode, enter the `show chassis cluster information` command.

```
{primary:node0}
user@host> show chassis cluster information

node0:
```

Redundancy Group Information:

```
Redundancy Group 0, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
</table>
```
Feb 24 22:56:27 hold secondary Hold timer expired
Feb 24 22:56:34 secondary primary Better priority (254/1)

Redundancy Group 1, Current State: secondary, Weight: -15

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold secondary</td>
<td>Hold timer expired</td>
<td></td>
</tr>
<tr>
<td>Feb 24 23:16:12</td>
<td>secondary</td>
<td>Remote yield (0/0)</td>
<td></td>
</tr>
<tr>
<td>Feb 24 23:31:36</td>
<td>primary</td>
<td>Monitor failed: IF</td>
<td></td>
</tr>
<tr>
<td>Feb 24 23:31:37</td>
<td>secondary-hold</td>
<td>Ready to become secondary</td>
<td></td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold secondary</td>
<td>Hold timer expired</td>
<td></td>
</tr>
<tr>
<td>Feb 24 23:16:13</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
<td></td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
Current LED color: Amber
Last LED change reason: Monitored objects are down

Failure Information:

Interface Monitoring Failure Information:
Redundancy Group 1, Monitoring status: Failed

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/2</td>
<td>Down</td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>Down</td>
</tr>
</tbody>
</table>

node1:

Redundancy Group Information:

Redundancy Group 0, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:34</td>
<td>hold secondary</td>
<td>Hold timer expired</td>
<td></td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold secondary</td>
<td>Hold timer expired</td>
<td></td>
</tr>
<tr>
<td>Feb 24 23:31:36</td>
<td>secondary</td>
<td>Remote is in secondary hold</td>
<td></td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold secondary</td>
<td>Hold timer expired</td>
<td></td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
Current LED color: Amber
Last LED change reason: Monitored objects are down

Meaning
The sample output confirms that in node 0, monitoring interfaces ge-0/0/1 and ge-0/0/2 are down. The weight of RG1 on node 0 reached zero value, which triggered RG1 failover during use of the **show chassis cluster status** command.
NOTE: For RG2, the default weight of 255 is set for redundant Ethernet interface 2 (reth2). When interface monitoring is required, we recommend that you use the default weight when you do not have backup links like those in RG1. That is, if interface ge-0/0/3 is disabled, it immediately triggers failover because the weight becomes 0 (255 minus 225), as indicated in the next verification section.

Verifying Interface Status After Disabling ge-0/0/3

Purpose
Verify that interface ge-0/0/3 is disabled on node 0.

Action
From configuration mode, enter the `set interface ge-0/0/3 disable` command.

```
{primary:node0}
user@host# set interface ge-0/0/3 disable
user@host# commit

node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

{primary:node0}
user@host# show interfaces ge-0/0/3
disable;
gigether-options {
    redundant-parent reth2;
}
```

Meaning
The sample output confirms that interface ge-0/0/3 is disabled.

Verifying Chassis Cluster Status After Disabling Interface ge-0/0/3

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status
Monitor Failure codes:
CS  Cold Sync monitoring       FL  Fabric Connection monitoring
GR  GRES monitoring           HW  Hardware monitoring
IF  Interface monitoring       IP  IP monitoring
LB  Loopback monitoring       MB  Mbuf monitoring
NH  Nexthop monitoring        NP  NPC monitoring
SP  SPU monitoring            SM  Schedule monitoring
```

Copyright © 2017, Juniper Networks, Inc.
CF Config Sync monitoring

Cluster ID: 2

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 0 , Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>0</td>
<td>secondary</td>
<td>no</td>
<td>IF</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 1 , Failover count: 2

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>0</td>
<td>secondary</td>
<td>no</td>
<td>IF</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 2 , Failover count: 2

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>0</td>
<td>secondary</td>
<td>no</td>
<td>IF</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Meaning Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

Verifying Chassis Cluster Interfaces After Disabling Interface ge-0/0/3

Purpose Verify information about chassis cluster interfaces.

Action From operational mode, enter the `show chassis cluster interfaces` command.

```bash
{primary:node0}
user@host> show chassis cluster interfaces
Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab0</td>
<td>ge-8/0/0</td>
<td>Up / Up</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth2</td>
<td>Up</td>
<td>2</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>
Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-8/0/2</td>
<td>120</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/1</td>
<td>150</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/2</td>
<td>140</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/1</td>
<td>130</td>
<td>Down</td>
<td>1</td>
</tr>
<tr>
<td>ge-8/0/3</td>
<td>255</td>
<td>Up</td>
<td>2</td>
</tr>
<tr>
<td>ge-0/0/3</td>
<td>255</td>
<td>Down</td>
<td>2</td>
</tr>
</tbody>
</table>

**Meaning**  
The sample output confirms that monitoring interfaces ge-0/0/1, ge-0/0/2, and ge-0/0/3 are down.

**Verifying Chassis Cluster Information After Disabling Interface ge-0/0/3**

**Purpose**  
Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

**Action**  
From operational mode, enter the `show chassis cluster information` command.

```{primary:node0}
user@host> show chassis cluster information
node0:
```

Redundancy Group Information:

```
Redundancy Group 0 , Current State: primary, Weight: 255

Time From To Reason
Feb 24 22:56:27 hold secondary Hold timer expired
Feb 24 22:56:34 secondary primary Better priority (254/1)
```

**Redundancy Group 1 , Current State: secondary, Weight: -15**

```
Time From To Reason
Feb 24 23:16:12 hold secondary Hold timer expired
Feb 24 23:16:13 secondary primary Remote yield (0/0)
Feb 24 23:31:36 primary secondary-hold Monitor failed: IF
Feb 24 23:31:37 secondary-hold secondary Ready to become secondary
```

**Redundancy Group 2 , Current State: secondary, Weight: 0**

```
Time From To Reason
Feb 24 23:16:12 hold secondary Hold timer expired
Feb 24 23:16:13 secondary primary Remote yield (0/0)
Feb 24 23:35:57 primary secondary-hold Monitor failed: IF
Feb 24 23:35:58 secondary-hold secondary Ready to become secondary
```

**Chassis cluster LED information:**
```
Current LED color: Amber
Last LED change reason: Monitored objects are down
```

**Failure Information:**
```
Interface Monitoring Failure Information:
```
Redundancy Group 1, Monitoring status: Failed
Interface          Status
ge-0/0/2           Down
ge-0/0/1           Down

Redundancy Group 2, Monitoring status: Failed
Interface          Status
ge-0/0/3           Down

node1:

Redundancy Group Information:

Redundancy Group 0, Current State: secondary, Weight: 255
Time            From           To             Reason
Feb 24 22:56:34 hold           secondary      Hold timer expired

Redundancy Group 1, Current State: primary, Weight: 255
Time            From           To             Reason
Feb 24 23:16:10 hold           secondary      Hold timer expired
Feb 24 23:31:36 secondary primary        Remote is in secondary hold

Redundancy Group 2, Current State: primary, Weight: 255
Time            From           To             Reason
Feb 24 23:16:10 hold           secondary      Hold timer expired
Feb 24 23:35:57 secondary primary        Remote is in secondary hold

Chassis cluster LED information:
Current LED color: Amber
Last LED change reason: Monitored objects are down

Meaning  The sample output confirms that in node 0, monitoring interfaces ge-0/0/1, ge-0/0/2, and ge-0/0/3 are down.

NOTE: In regard to RG1, allowing any interface in node 0 go up triggers a failover only if the preempt option is enabled. In the example, preempt is not enabled. Therefore the node should return to normal, with no monitor failure showing for RG1.

Verifying That Interface ge-0/0/2 Is Enabled

Purpose  Verify that interface ge-0/0/2 is enabled on node 0.

Action  From configuration mode, enter the delete interfaces ge-0/0/2 disable command.
{primary:node0}
The sample output confirms that interface ge-0/0/2 disable is deleted.

Verifying Chassis Cluster Status After Enabling Interface ge-0/0/2

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status
Monitor Failure codes:
 CS Cold Sync monitoring FL Fabric Connection monitoring
 GR GRES monitoring HW Hardware monitoring
 IF Interface monitoring IP IP monitoring
 LB Loopback monitoring MB Mbuf monitoring
 NH Nexthop monitoring NP NPC monitoring
 SP SPU monitoring SM Schedule monitoring
 CF Config Sync monitoring

Cluster ID: 2
Node Priority Status Preempt Manual Monitor-failures
Redundancy group: 0 , Failover count: 1
 node0 254 primary no no None
 node1 1 secondary no no None
Redundancy group: 1 , Failover count: 2
 node0 200 secondary no no None
 node1 100 primary no no None
Redundancy group: 2 , Failover count: 2
 node0 0 secondary no no IF
 node1 100 primary no no None
```

Meaning
Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

Verifying Chassis Cluster Interfaces After Enabling Interface ge-0/0/2

Purpose
Verify information about chassis cluster interfaces.
**Action**  From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}
user@host> show chassis cluster interfaces
Control link status: Up

Control interfaces:
 Index Interface Monitored-Status Internal-SA
 0 em0 Up Disabled
 1 em1 Down Disabled

Fabric link status: Up

Fabric interfaces:
 Name Child-interface Status (Physical/Monitored)
 fab0 ge-0/0/0 Up / Up
 fab0 ge-8/0/0 Up / Up

Redundant-ethernet Information:
 Name Status Redundancy-group
 reth0 Up 1
 reth1 Up 1
 reth2 Up 2

Redundant-pseudo-interface Information:
 Name Status Redundancy-group
 lo0 Up 0

Interface Monitoring:
 Interface Weight Status Redundancy-group
 ge-8/0/2 120 Up 1
 ge-8/0/1 150 Up 1
 ge-0/0/2 140 Up 1
 ge-0/0/1 130 Down 1
 ge-8/0/3 255 Up 2
 ge-0/0/3 255 Down 2
```

**Meaning**  The sample output confirms that monitoring interfaces ge-0/0/1 and ge-0/0/3 are down. Monitoring interface ge-0/0/2 is up after the disable has been deleted.

**Verifying Chassis Cluster Information After Enabling Interface ge-0/0/2**

**Purpose**  Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

**Action**  From operational mode, enter the `show chassis cluster information` command.

```
{primary:node0}
user@host> show chassis cluster information
node0:
```
Redundancy Group Information:

Redundancy Group 0 , Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:27</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 22:56:34</td>
<td>secondary</td>
<td>primary</td>
<td>Better priority (254/1)</td>
</tr>
</tbody>
</table>

Redundancy Group 1 , Current State: secondary, Weight: 125

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:12</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
<tr>
<td>Feb 24 23:31:36</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Monitor failed: IF</td>
</tr>
<tr>
<td>Feb 24 23:31:37</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

Redundancy Group 2 , Current State: secondary, Weight: 0

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:12</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:16:13</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
<tr>
<td>Feb 24 23:35:57</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Monitor failed: IF</td>
</tr>
<tr>
<td>Feb 24 23:35:58</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
Current LED color: Amber
Last LED change reason: Monitored objects are down

Failure Information:

Interface Monitoring Failure Information:
Redundancy Group 1, Monitoring status: Unhealthy
Interface        Status
ge-0/0/1          Down

Redundancy Group 2, Monitoring status: Failed
Interface        Status
ge-0/0/3          Down

Redundancy Group Information:

Redundancy Group 0 , Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:34</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Redundancy Group 1 , Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:31:36</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
</tbody>
</table>

Redundancy Group 2 , Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:35:57</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
</tbody>
</table>
Chassis cluster LED information:
Current LED color: Amber
Last LED change reason: Monitored objects are down

Meaning  The sample output confirms that in node 0, monitoring interfaces ge-0/0/1 and ge-0/0/3 are down. Monitoring interface ge-0/0/2 is active after the disable has been deleted.

Verifying Chassis Cluster RG2 Preempt
Purpose  Verify that the chassis cluster RG2 is preempted on node 0.

Action  From configuration mode, enter the `set chassis cluster redundancy-group 2 preempt` command.

```
{primary:node0}
user@host# set chassis cluster redundancy-group 2 preempt
user@host# commit

node0:
 configuration check succeeds
node1:
 commit complete
node0:
 commit complete
```

Meaning  The sample output confirms that chassis cluster RG2 preempted on node 0.

NOTE: In the next section, you check that RG2 fails over back to node 0 when preempt is enabled when the disabled node 0 interface is brought online.

Verifying Chassis Cluster Status After Preempting RG2
Purpose  Verify the chassis cluster status, failover status, and redundancy group information.

Action  From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status
Monitor Failure codes:
 CS Cold Sync monitoring FL Fabric Connection monitoring
 GR GRES monitoring HW Hardware monitoring
 IF Interface monitoring IP IP monitoring
 LB Loopback monitoring MB Mbuf monitoring
 NH Nexthop monitoring NP NPC monitoring
```
SPU monitoring  Schedule monitoring
Config Sync monitoring

Cluster ID: 2

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 1 , Failover count: 2

| node0 | 200      | secondary | no      | no     | None             |
| node1 | 100      | primary   | yes     | no     | None             |

Redundancy group: 2 , Failover count: 2

| node0 | 0        | secondary | yes     | no     | IF               |
| node1 | 100      | primary   | yes     | no     | None             |

Meaning Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

Verifying That Interface ge-0/0/3 Is Enabled

Purpose Verify that interface ge-0/0/3 is enabled on node 0.

Action From configuration mode, enter the `delete interfaces ge-0/0/3 disable` command.

```
{primary:node0}
user@host# delete interfaces ge-0/0/3 disable
user@host# commit

node0: configuration check succeeds
node1: commit complete
node0: commit complete
```

Meaning The sample output confirms that interface ge-0/0/3 disable has been deleted.

Verifying Chassis Cluster Status After Enabling Interface ge-0/0/3

Purpose Verify the chassis cluster status, failover status, and redundancy group information.

Action From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status
```
Monitor Failure codes:

- CS  Cold Sync monitoring
- GR  GRES monitoring
- IF  Interface monitoring
- LB  Loopback monitoring
- NH  Nexthop monitoring
- NP  NPC monitoring
- SP  SPU monitoring
- SM  Schedule monitoring
- CF  Config Sync monitoring

Cluster ID: 2

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 1, Failover count: 2

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>primary</td>
<td>yes</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 2, Failover count: 3

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>yes</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>100</td>
<td>secondary</td>
<td>yes</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Meaning

Use the `show chassis cluster status` command to confirm that devices in the chassis cluster are communicating properly, with one device functioning as the primary node and the other as the secondary node.

Verifying Chassis Cluster Interfaces After Enabling Interface ge-0/0/3

Purpose

Verify information about chassis cluster interfaces.

Action

From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}
user@host> show chassis cluster interfaces
Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status (Physical/Monitored)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab0</td>
<td>ge-8/0/0</td>
<td>Up / Up</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-8/0/0</td>
<td>Up / Up</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Meaning

The sample output confirms that monitoring interface ge-0/0/1 is down. Monitoring interfaces ge-0/0/2, and ge-0/0/3 are up after deleting the disable.

Verifying Chassis Cluster Information After Enabling Interface ge-0/0/3

Purpose

Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitoring interfaces in the cluster.

Action

From operational mode, enter the `show chassis cluster information` command.

```
{primary:node0}
user@host> show chassis cluster information

node0:
--
Redundancy Group Information:

Redundancy Group 0 , Current State: primary, Weight: 255
Time From To Reason
Feb 24 22:56:27 hold secondary Hold timer expired
Feb 24 22:56:34 secondary primary Better priority (254/1)

Redundancy Group 1 , Current State: secondary, Weight: 125
Time From To Reason
Feb 24 23:16:12 hold secondary Hold timer expired
Feb 24 23:16:12 secondary primary Remote yield (0/0)
Feb 24 23:31:36 primary secondary-hold Monitor failed: IF
Feb 24 23:31:37 secondary-hold secondary Ready to become secondary

Redundancy Group 2 , Current State: primary, Weight: 255
Time From To Reason
Feb 24 23:16:12 hold secondary Hold timer expired
Feb 24 23:16:13 secondary primary Remote yield (0/0)
Feb 24 23:35:57 primary secondary-hold Monitor failed: IF
Feb 24 23:35:58 secondary-hold secondary Ready to become secondary
Feb 24 23:45:45 secondary primary Remote is in secondary hold
```
Chassis cluster LED information:
Current LED color: Green
Last LED change reason: No failures

Failure Information:

Interface Monitoring Failure Information:
Redundancy Group 1, Monitoring status: Unhealthy

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/1</td>
<td>Down</td>
</tr>
</tbody>
</table>

node1:

Redundancy Group Information:

Redundancy Group 0, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 22:56:34</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:31:36</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24 23:16:10</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Feb 24 23:35:57</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
<tr>
<td>Feb 24 23:45:45</td>
<td>primary</td>
<td>secondary-hold Preempt (100/200)</td>
<td></td>
</tr>
<tr>
<td>Feb 24 23:45:46</td>
<td>secondary-hold secondary</td>
<td>Ready to become secondary</td>
<td></td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
Current LED color: Amber
Last LED change reason: Monitored objects are down

Meaning

The sample output confirms that in node 0, monitoring interface ge-0/0/1 is down. RG2 on node 0 state is back to primary state (because of the preempt enable) with a healthy weight of 255 when interface ge-0/0/3 is back up.

Related Documentation

- Example: Configuring Chassis Cluster Redundancy Groups on page 123
- Understanding Chassis Cluster Redundancy Group Interface Monitoring on page 175
- Understanding Chassis Cluster Redundancy Group IP Address Monitoring on page 205
- Understanding Chassis Cluster Redundancy Group Failover on page 231
- Understanding Chassis Cluster Redundancy Groups on page 119
Understanding Chassis Cluster Redundancy Group IP Address Monitoring

Supported Platforms  SRX Series, vSRX

Redundancy group IP address monitoring checks end-to-end connectivity and allows a redundancy group to fail over because of the inability of a redundant Ethernet interface (known as a reth) to reach a configured IP address. Redundancy groups on both devices in a cluster can be configured to monitor specific IP addresses to determine whether an upstream device in the network is reachable. The redundancy group can be configured such that if the monitored IP address becomes unreachable, the redundancy group will fail over to its backup to maintain service. The primary difference between this monitoring feature and interface monitoring is that IP address monitoring allows for failover when the interface is still up but the network device it is connected to is not reachable for some reason. It may be possible under those circumstances for the other node in the cluster to route traffic around the problem.

NOTE: If you want to dampen the failovers occurring because of IP address monitoring failures, use the hold-down-interval statement.

IP address monitoring configuration allows you to set not only the address to monitor and its failover weight but also a global IP address monitoring threshold and weight. Only after the IP address monitoring global-threshold is reached because of cumulative monitored address reachability failure will the IP address monitoring global-weight value be deducted from the redundat group’s failover threshold. Thus, multiple addresses can be monitored simultaneously as well as monitored to reflect their importance to maintaining traffic flow. Also, the threshold value of an IP address that is unreachable and then becomes reachable again will be restored to the monitoring threshold. This will not, however, cause a failback unless the preempt option has been enabled.

When configured, the IP address monitoring failover value (global-weight) is considered along with interface monitoring—if set—and built-in failover monitoring, including SPU monitoring, cold-sync monitoring, and NPC monitoring (on supported platforms). The main IP addresses that should be monitored are router gateway addresses to ensure that valid traffic coming into the services gateway can be forwarded to the appropriate network router.

Starting in Junos OS Release 12.1X46-D35 and Junos OS Release 17.3R1, for all SRX Series devices, the reth interface supports proxy ARP.

One Services Processing Unit (SPU) or Packet Forwarding Engine (PFE) per node is designated to send Internet Control Message Protocol (ICMP) ping packets for the monitored IP addresses on the cluster. The primary PFE sends ping packets using Address Resolution Protocol (ARP) requests resolved by the Routing Engine (RE). The source for these pings is the redundant Ethernet interface MAC and IP addresses. The secondary PFE resolves ARP requests for the monitored IP address itself. The source for these pings...
is the physical child MAC address and a secondary IP address configured on the redundant Ethernet interface. For the ping reply to be received on the secondary interface, the I/O card (IOC), central PFE processor, or Flex IOC adds both the physical child MAC address and the redundant Ethernet interface MAC address to its MAC table. The secondary PFE responds with the physical child MAC address to ARP requests sent to the secondary IP address configured on the redundant Ethernet interface.

NOTE: IP address monitoring is not supported on SRX5000 line devices if the redundant Ethernet interface is configured for a VPN routing and forwarding (VRF) instance.

The default interval to check the reachability of a monitored IP address is once per second. The interval can be adjusted using the `retry-interval` command. The default number of permitted consecutive failed ping attempts is 5. The number of allowed consecutive failed ping attempts can be adjusted using the `retry-count` command. After failing to reach a monitored IP address for the configured number of consecutive attempts, the IP address is determined to be unreachable and its failover value is deducted from the redundancy group's global-threshold.

NOTE: On SRX5600 and SRX5800 devices, only two of the 10 ports on each PIC of 40-port 1-Gigabit Ethernet I/O cards (IOCs) can simultaneously enable IP address monitoring. Because there are four PICs per IOC, this permits a total of eight ports per IOC to be monitored. If more than two ports per PIC on 40-port 1-Gigabit Ethernet IOCs are configured for IP address monitoring, the commit will succeed but a log entry will be generated, and the accuracy and stability of IP address monitoring cannot be ensured. This limitation does not apply to any other IOCs or devices.

Once the IP address is determined to be unreachable, its weight is deducted from the global-threshold. If the recalculated global-threshold value is not 0, the IP address is marked unreachable, but the global-weight is not deducted from the redundancy group's threshold. If the redundancy group IP monitoring global-threshold reaches 0 and there are unreachable IP addresses, the redundancy group will continuously fail over and fail back between the nodes until either an unreachable IP address becomes reachable or a configuration change removes unreachable IP addresses from monitoring. Note that both default and configured hold-down-interval failover dampening is still in effect.

Every redundancy group x has a threshold tolerance value initially set to 255. When an IP address monitored by redundancy group x becomes unavailable, its weight is subtracted from the redundancy group x's threshold. When redundancy group x's threshold reaches 0, it fails over to the other node. For example, if redundancy group 1 was primary on node 0, on the threshold-crossing event, redundancy group 1 becomes primary on node 1. In this case, all the child interfaces of redundancy group 1's redundant Ethernet interfaces begin handling traffic.

A redundancy group x failover occurs because the cumulative weight of the redundancy group x's monitored IP addresses and other monitoring has brought its threshold value
to 0. When the monitored IP addresses of redundancy group $x$ on both nodes reach their thresholds at the same time, redundancy group $x$ is primary on the node with the lower node ID, which is typically node 0.

**NOTE:** Upstream device failure detection for the chassis cluster feature is supported on SRX Series devices.

Starting in Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, configuring Address Resolution Protocol (ARP) request throttling is supported on SRX5000 line devices. This feature allows you to bypass the previously hard-coded ARP request throttling time default (10 seconds per SPU for each IP address) and set the time to a greater value (10 through 100 seconds). Setting the throttling time to a greater value reduces the high utilization of the Routing Engine, allowing it to work more efficiently. You can configure the ARP request throttling time using the `set forwarding-options next-hop arp-throttle <seconds>` command.

Monitoring can be accomplished only if the IP address is reachable on a redundant Ethernet interface (known as a eth in CLI commands and interface listings), and IP addresses cannot be monitored over a tunnel. For an IP address to be monitored through a redundant Ethernet interface on a secondary cluster node, the interface must have a secondary IP address configured. IP address monitoring cannot be used on a chassis cluster running in transparent mode. The maximum number of monitoring IP addresses that can be configured per cluster is 64 for the SRX5000 line and 32 for the SRX1400 device and the SRX3000 line.

**NOTE:** Redundancy group IP address monitoring is not supported for IPv6 destinations.

### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D60</td>
<td>Starting in Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, configuring Address Resolution Protocol (ARP) request throttling is supported on SRX5000 line devices.</td>
</tr>
<tr>
<td>12.1X46-D35</td>
<td>Starting in Junos OS Release 12.1X46-D35 and Junos OS Release 17.3R1, for all SRX Series devices, the eth interface supports proxy ARP.</td>
</tr>
</tbody>
</table>

### Related Documentation

- Understanding Chassis Cluster Redundancy Groups on page 119
- Understanding Chassis Cluster Redundancy Group Interface Monitoring on page 175
- Example: Configuring Chassis Cluster Redundancy Group IP Address Monitoring on page 208
- Understanding Chassis Cluster Redundancy Group Failover on page 231
Example: Configuring Chassis Cluster Redundancy Group IP Address Monitoring

**Supported Platforms**

SRX Series, vSRX

This example shows how to configure redundancy group IP address monitoring for an SRX Series device in a chassis cluster.

- Requirements on page 208
- Overview on page 208
- Configuration on page 209
- Verification on page 210

**Requirements**

Before you begin:

- Set the chassis cluster node ID and cluster ID. See “Example: Setting the Chassis Cluster Node ID and Cluster ID for SRX Series Devices” on page 90
- Configure the chassis cluster management interface. See “Example: Configuring the Chassis Cluster Management Interface” on page 94.
- Configure the chassis cluster fabric. See “Example: Configuring the Chassis Cluster Fabric Interfaces” on page 107.

**Overview**

You can configure redundancy groups to monitor upstream resources by pinging specific IP addresses that are reachable through redundant Ethernet interfaces on either node in a cluster. You can also configure global threshold, weight, retry interval, and retry count parameters for a redundancy group. When a monitored IP address becomes unreachable, the weight of that monitored IP address is deducted from the redundancy group IP address monitoring global threshold. When the global threshold reaches 0, the global weight is deducted from the redundancy group threshold. The retry interval determines the ping interval for each IP address monitored by the redundancy group. The pings are sent as soon as the configuration is committed. The retry count sets the number of allowed consecutive ping failures for each IP address monitored by the redundancy group.

In this example, you configure the following settings for redundancy group 1:

- IP address to monitor—10.1.1.10
- IP address monitoring global-weight—100
- IP address monitoring global-threshold—200

**NOTE:** The threshold applies cumulatively to all IP addresses monitored by the redundancy group.

- IP address retry-interval—3 seconds
• IP address retry-count—10
• Weight—150
• Redundant Ethernet interface—reth1.0
• Secondary IP address—10.1.1.101

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[primary:node0][edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring global-weight 100
set chassis cluster redundancy-group 1 ip-monitoring global-threshold 200
set chassis cluster redundancy-group 1 ip-monitoring retry-interval 3
set chassis cluster redundancy-group 1 ip-monitoring retry-count 10
set chassis cluster redundancy-group 1 ip-monitoring family inet 10.1.1.10 weight 150
interface reth1.0 secondary-ip-address 10.1.1.101
```

Step-by-Step Procedure

To configure redundancy group IP address monitoring:

1. Specify a global monitoring weight.
   
   ```
 [primary:node0][edit]
 user@host# set chassis cluster redundancy-group 1 ip-monitoring global-weight 100
   ```

2. Specify the global monitoring threshold.
   
   ```
 [primary:node0][edit]
 user@host# set chassis cluster redundancy-group 1 ip-monitoring global-threshold 200
   ```

3. Specify the retry interval.
   
   ```
 [primary:node0][edit]
 user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-interval 3
   ```

4. Specify the retry count.
   
   ```
 [primary:node0][edit]
 user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-count 10
   ```

5. Specify the IP address to be monitored, weight, redundant Ethernet interface, and secondary IP address.
   
   ```
 [primary:node0][edit]
 user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 10.1.1.10 weight 100 interface reth1.0 secondary-ip-address 10.1.1.101
   ```
Results

From configuration mode, confirm your configuration by entering the `show chassis cluster redundancy-group 1` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
{primary:node0}[edit]
user@host# show chassis cluster redundancy-group 1
ip-monitoring {
 global-weight 100;
 global-threshold 200;
 family {
 inet {
 10.1.1.10 {
 weight 100;
 interface reth1.0 secondary-ip-address 10.1.1.101;
 }
 }
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

**Verifying the Status of Monitored IP Addresses for a Redundancy Group**

**Purpose**

Verify the status of monitored IP addresses for a redundancy group.

**Action**

From operational mode, enter the `show chassis cluster ip-monitoring status` command. For information about a specific group, enter the `show chassis cluster ip-monitoring status redundancy-group` command.

```
{primary:node0}
user@host> show chassis cluster ip-monitoring status
node0:

Redundancy group: 1
Global threshold: 200
Current threshold: -120

 IP address Status Failure count Reason Weight
10.1.1.10 reachable 0 n/a 220
10.1.1.101 reachable 0 n/a 100

node1:

Redundancy group: 1
Global threshold: 200
Current threshold: -120
```
Related Documentation

- Understanding Chassis Cluster Redundancy Group Interface Monitoring on page 175
- Understanding Chassis Cluster Redundancy Group IP Address Monitoring on page 205
- Understanding Chassis Cluster Redundancy Group Failover on page 231

Understanding Chassis Cluster Monitoring of Global-Level Objects

Supported Platforms

SRX4100, SRX4200, SRX5400, SRX5600, SRX5800, vSRX

There are various types of objects to monitor as you work with devices configured as chassis clusters, including global-level objects and objects that are specific to redundancy groups. This section describes the monitoring of global-level objects.

The SRX5000 lines have one or more Services Processing Units (SPUs) that run on a Services Processing Card (SPC). All flow-based services run on the SPU. Other SRX Series devices have a flow-based forwarding process, flowd, which forwards packets through the device.

- Understanding SPU Monitoring on page 211
- Understanding flowd Monitoring on page 212
- Understanding Cold-Sync Monitoring on page 213

Understanding SPU Monitoring

SPU monitoring tracks the health of the SPUs and of the central point (CP). The chassis manager on each SPC monitors the SPUs and the central point, and also maintains the heartbeat with the Routing Engine chassisd. In this hierarchical monitoring system, chassisd is the center for hardware failure detection. SPU monitoring is enabled by default.

**NOTE:** SPU monitoring is supported on SRX5000 line devices.

Persistent SPU and central point failure on a node is deemed a catastrophic Packet Forwarding Engine (PFE) failure. In this case, the node’s PFE is disabled in the cluster by reducing the priorities of redundancy groups x to 0.

- A central point failure triggers failover to the secondary node. The failed node’s PFE, which includes all SPCs and all I/O cards (IOCs), is automatically restarted. If the secondary central point has failed as well, the cluster is unable to come up because there is no primary device. Only the data plane (redundancy group x) is failed over.
- A single, failed SPU causes failover of redundancy group x to the secondary node. All IOCs and SPCs on the failed node are restarted and redundancy group x is failed over to the secondary node. Failover to the secondary node is automatic without the need for user intervention. When the failed (former) primary node has its failing component
restored, failback is determined by the preempt configuration for the redundancy group $x$. The interval for dead SPU detection is 30 seconds.

**NOTE:** On SRX5400, SRX5600, and SRX5800 SPCs, the Routing Engine monitors the health of the chassis manager. The chassis manager sends a heartbeat message to the Routing Engine chassisd every second. When the Routing Engine chassisd detects a heartbeat loss, it initiates a power cycle for the entire SPC. If multiple recoveries fail within a certain timeframe, the Routing Engine powers off the SPC to prevent it from affecting the entire system.

This event triggers an alarm, indicating that a new field-replaceable unit (FRU) is needed.

The following list describes the limitations for inserting an SPC on SRX5400, SRX5600, and SRX5800 devices in chassis cluster mode:

- The chassis cluster must be in active/passive mode before and during the SPC insert procedure.
- A different number of SPCs cannot be inserted in two different nodes.
- A new SPC must be inserted in a slot that is higher than the central point slot.
  The existing combo central point cannot be changed to a full central point after the new SPC is inserted.
- During an SPC insert procedure, the IKE and IPsec configurations cannot be modified.

**NOTE:** An SPC is not hot-insertable. Before inserting an SPC, the device must be taken offline. After inserting an SPC, the device must be rebooted.

- Users cannot specify the SPU and the IKE instance to anchor a tunnel.
- After a new SPC is inserted, the existing tunnels cannot use the processing power of the new SPC and redistribute it to the new SPC.

**Understanding flowd Monitoring**

Flowd monitoring tracks the health of the flowd process. Flowd monitoring is enabled by default.

Persistent flowd failure on a node is deemed a catastrophic Packet Forwarding Engine (PFE) failure. In this case, the node’s PFE is disabled in the cluster by reducing the priorities of redundancy groups $x$ to 0.

A failed flowd process causes failover of redundancy group $x$ to the secondary node. Failover to the secondary node is automatic without the need for user intervention. When the failed (former) primary node has its failing component restored, failback is determined by the preempt configuration for the redundancy group $x$. 

Chassis Cluster Feature Guide for SRX Series Devices

Copyright © 2017, Juniper Networks, Inc.
During SPC and flowd monitoring failures on a local node, the data plane redundancy group RG1+ fails over to the other node that is in a good state. However, the control plane RG0 does not fail over and remains primary on the same node as it was before the failure.

Understanding Cold-Sync Monitoring

The process of synchronizing the data plane runtime objects (RTOs) on the startup of the SPUs or flowd is called cold sync. When all the RTOs are synchronized, the cold-sync process is complete, and the SPU or flowd on the node is ready to take over for the primary node, if needed. The process of monitoring the cold-sync state of all the SPUs or flowd on a node is called cold-sync monitoring. Keep in mind that when preempt is enabled, cold-sync monitoring prevents the node from taking over the mastership until the cold-sync process is completed for the SPUs or flowd on the node. Cold-sync monitoring is enabled by default.

When the node is rebooted, or when the SPUs or flowd come back up from failure, the priority for all the redundancy groups 1+ is 0. When an SPU or flowd comes up, it tries to start the cold-sync process with its mirror SPU or flowd on the other node.

If this is the only node in the cluster, the priorities for all the redundancy groups 1+ stay at 0 until a new node joins the cluster. Although the priority is at 0, the device can still receive and send traffic over its interfaces. A priority of 0 implies that it cannot fail over in case of a failure. When a new node joins the cluster, all the SPUs or flowd, as they come up, will start the cold-sync process with the mirror SPUs or flowd of the existing node.

When the SPU or flowd of a node that is already up detects the cold-sync request from the SPU or flowd of the peer node, it posts a message to the system indicating that the cold-sync process is complete. The SPUs or flowd of the newly joined node posts a similar message. However, they post this message only after all the RTOs are learned and cold-sync is complete. On receipt of completion messages from all the SPUs or flowd, the priority for redundancy groups 1+ moves to the configured priority on each node if there are no other failures of monitored components, such as interfaces. This action ensures that the existing primary node for redundancy 1+ groups always moves to the configured priority first. The node joining the cluster later moves to its configured priorities only after all its SPUs or flowd have completed their cold-sync process. This action in turn guarantees that the newly added node is ready with all the RTOs before it takes over mastership.

Understanding Cold-Sync Monitoring with SPU Replacement or Expansion

If your SRX5600 or SRX5800 Services Gateway is part of a chassis cluster, when you replace a Services Processing Card (SPC) with a SPC2 on the device, you must fail over all redundancy groups to one node.

NOTE: For SRX5400 devices, only SPC2 is supported.

The following events take place during this scenario:
• When the SPC2 is to be installed on a node (for example, on node 1, the secondary node), node 1 is shut down so the SPC2 can be installed.

• Once node 1 is powered up and rejoins the cluster, the number of SPUs on node 1 will be higher than the number of SPUs on node 0, the primary node. Now, one node (node 0) still has an old SPC while the other node has the new SPC2; SPC2s have four SPUs per card, and the older SPCs have two SPUs per card.

The cold-sync process is based on node 0 total SPU number. Once those SPUs in node 1 corresponding to node 0 SPUs have completed the cold-sync, the node 1 will declare cold-sync completed. Since the additional SPUs in node 1 do not have the corresponding node 0 SPUs, there is nothing to be synchronized and failover from node 0 to node 1 does not cause any issue.

SPU monitoring functionality monitors all SPUs and reports if there are any SPU failure. For example assume that both nodes originally have 2 existing SPCs and you have replaced both SPCs with SPC2 on node 1. Now we have 4 SPUs in node 0 and 8 SPUs in node 1. The SPU monitoring function monitors the 4 SPUs on node 0 and 8 SPUs on node 1. If any of those 8 SPUs failed in node 1, the SPU monitoring will still report to the Juniper Services Redundancy Protocol (jsrpdp) process that there is an SPU failure. The jsrpdp process controls chassis clustering.

• Once node 1 is ready to failover, you can initiate all redundancy group failover manually to node 1. Node 0 will be shut down to replace its SPC with the SPC2. After the replacement, node 0 and node 1 will have exactly the same hardware setup.

Once node 0 is powered up and rejoins the cluster, the system will operate as a normal chassis cluster.

Related Documentation

• Understanding Chassis Cluster Redundancy Group Interface Monitoring on page 175
• Example: Configuring Chassis Cluster Interface Monitoring on page 176
• Understanding Chassis Cluster Redundancy Group IPAddress Monitoring on page 205
• Example: Configuring Chassis Cluster Redundancy Group IPAddress Monitoring on page 208

IP Monitoring Overview

Supported Platforms SRX Series

IP monitoring checks the end-to-end connectivity of configured IP addresses and allows a redundancy group to automatically fail over when the monitored IP address is not reachable through the redundant Ethernet (reth) interface. Both the primary and secondary nodes in the chassis cluster monitor specific IP addresses to determine whether an upstream device in the network is reachable.

IP monitoring allows for failover based upon end-to-end reachability of a configured monitored IP address. On SRX Series devices, the reachability test is done by sending a ping to the monitored IP address from both the primary node and the secondary node through the reth interface and checking if a response is returned. The monitored IP address
can be on a directly connected host in the same subnet as the reth interface or on a remote device reachable through a next-hop router.

The reachability states of the monitored IP address are reachable, unreachable, and unknown. The status is “unknown” if Packet Forwarding Engines are not yet up and running. The status changes to either "reachable" or "unreachable," depending on the corresponding message from the Packet Forwarding Engine.

**NOTE:** We do not recommend configuring chassis cluster IP monitoring on Redundancy Group 0 (RG0) for SRX Series devices.

Table 20 on page 215 provides details of different combinations of monitored results from both the primary and secondary nodes, and the corresponding actions by the Juniper Services Redundancy Protocol (jsrpd) process.

**Table 20: IP Monitoring Results and Failover Action**

<table>
<thead>
<tr>
<th>Primary Node Monitored Status</th>
<th>Secondary Node Monitored Status</th>
<th>Failover Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reachable</td>
<td>Reachable</td>
<td>No action</td>
</tr>
<tr>
<td>Unreachable</td>
<td>Reachable</td>
<td>Failover</td>
</tr>
<tr>
<td>Reachable</td>
<td>Unreachable</td>
<td>No action</td>
</tr>
<tr>
<td>Unreachable</td>
<td>Unreachable</td>
<td>No action</td>
</tr>
</tbody>
</table>

**NOTE:**
- You can configure up to 64 IP addresses for IP monitoring on SRX5000 line devices.
  - The minimum interval of IP monitoring is 1 second and the maximum is 30 seconds. Default interval is 1 second.
  - The minimum threshold of IP monitoring is 5 requests and the maximum is 15 requests. If the IP monitoring request does not receive a response for consecutive requests (exceeding the threshold value), IP monitoring reports that the monitored IP is unreachable. Default value for the threshold is 5.
- Reth interface not associated with Redundancy Group (RG) in IP monitoring CLI configuration is supported.

Table 21 on page 216 provides details on multiple interface combinations of IOC2 and IOC3 with maximum MAC numbers.
Table 21: Maximum MACs Supported for IP Monitoring on IOC2 and IOC3

<table>
<thead>
<tr>
<th>Cards</th>
<th>Interfaces</th>
<th>Maximum MACs Supported for IP Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOC2 (SRX5K-MPC)</td>
<td>10XGE</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>20GE</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2X40GE</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1X100GE</td>
<td>1</td>
</tr>
<tr>
<td>IOC3 (SRX5K-MPC3-40G10G or SRX5K-MPC3-100G10G)</td>
<td>24x10GE</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6x40GE</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2x100GE + 4x10GE</td>
<td>6</td>
</tr>
</tbody>
</table>

Note the following limitations for IP monitoring support on SRX5000 line IOC2 and IOC3:

- IP monitoring is supported through the reth or the RLAG interface. If your configuration does not specify either of these interfaces, the route lookup returns a non-reth/RLAG interface, which results in a failure report.

- Equal-cost multipath (ECMP) routing is not supported in IP monitoring.

**Related Documentation**

- SRX5400, SRX5600, and SRX5800 Services Gateway Card Overview
- Example: Configuring IP Monitoring on SRX5000 Line Devices for IOC2 and IOC3 on page 216

**Example: Configuring IP Monitoring on SRX5000 Line Devices for IOC2 and IOC3**

**Supported Platforms** SRX5400, SRX5600, SRX5800

This example shows how to monitor IP address on a SRX5000 line device with chassis cluster enabled.

- Requirements on page 216
- Overview on page 217
- Configuration on page 217
- Verification on page 222

**Requirements**

This example uses the following hardware and software:

- Two SRX5400 Services Gateways with MIC (SRX-MIC-10XG-SFPP [IOC2]), and one Ethernet switch
Junos OS Release 15.1X49-D30

The procedure mentioned in this example are also applicable to IOC3 also.

Before you begin:

- Physically connect the two SRX5400 devices (back-to-back for the fabric and control ports).
- Configure the two devices to operate in a chassis cluster.

Overview

IP address monitoring checks end-to-end reachability of the configured IP address and allows a redundancy group to automatically fail over when it is not reachable through the child link of redundant Ethernet (reth) interface. Redundancy groups on both devices, or nodes, in a cluster can be configured to monitor specific IP addresses to determine whether an upstream device in the network is reachable.

Topology

In this example, two SRX5400 devices in a chassis cluster are connected to an Ethernet switch. The example shows how the redundancy groups can be configured to monitor key upstream resources reachable through redundant Ethernet interfaces on either node in a cluster.

You set the system to send pings every second, with 10 losses required to declare unreachability to peer. You also set up a secondary IP address to allow testing from the secondary node.

In this example, you configure the following settings for redundancy group 1:

- IP address to be monitored—192.0.2.2, 198.51.100.2, 203.0.113.2
- IP monitoring global-weight—255
- IP monitoring global-threshold—240
- IP monitoring retry-interval—3 seconds
- IP monitoring retry-count—10
- Weight for monitored IP address—80
- Secondary IP addresses—192.0.2.12, 198.51.100.12, 203.0.113.12

Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set chassis cluster reth-count 10
set chassis cluster control-ports fpc 3 port 0
```
To configure IP monitoring on a 10x10GE SFP+ MIC:

1. Specify the number of redundant Ethernet interfaces.
   ```bash
 [primary:node0][edit]
 user@host# set chassis cluster reth-count 10
   ```

2. Configure the control ports.
   ```bash
 [primary:node0][edit]
 user@host# set chassis cluster control-ports fpc 3 port 0
 user@host# set chassis cluster control-ports fpc 0 port 0
   ```

   ```bash
 [primary:node0][edit]
   ```
user@host# set interfaces fab0 fabric-options member-interfaces xe-1/2/0
user@host# set interfaces fab1 fabric-options member-interfaces xe-4/2/0

4. Specify a redundancy group’s priority for primacy on each node of the cluster. The higher number takes precedence.

```
[primary:node0][edit]
user@host# set chassis cluster redundancy-group 0 node 0 priority 254
user@host# set chassis cluster redundancy-group 0 node 1 priority 1
user@host# set chassis cluster redundancy-group 1 node 0 priority 200
user@host# set chassis cluster redundancy-group 1 node 1 priority 199
```

5. Configure IP monitoring under redundancy-group 1 with global weight, global threshold, retry interval and retry count.

```
[primary:node0][edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring global-weight 255
user@host# set chassis cluster redundancy-group 1 ip-monitoring global-threshold 240
user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-interval 3
user@host# set chassis cluster redundancy-group 1 ip-monitoring retry-count 10
```

6. Configure the redundant Ethernet interfaces to redundancy-group 1. Assign a weight to the IP address to be monitored, and configure a secondary IP address that will be used to send packets from the secondary node to track the IP address being monitored.

```
[primary:node0][edit]
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 192.0.2.2 weight 80
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 192.0.2.2 interface reth0.0 secondary-ip-address 192.0.2.12
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 198.51.100.2 weight 80
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 198.51.100.2 interface reth1.0 secondary-ip-address 198.51.100.12
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 203.0.113.2 weight 80
user@host# set chassis cluster redundancy-group 1 ip-monitoring family inet 203.0.113.2 interface reth2.0 secondary-ip-address 203.0.113.12
```

7. Assign child interfaces for the redundant Ethernet interfaces from node 0, node 1, and node 2.

```
[primary:node0][edit]
user@host# set interfaces xe-1/2/1 gigether-options redundant-parent reth0
user@host# set interfaces xe-1/2/2 gigether-options redundant-parent reth2
user@host# set interfaces xe-1/2/3 gigether-options redundant-parent reth1
user@host# set interfaces xe-4/2/1 gigether-options redundant-parent reth0
user@host# set interfaces xe-4/2/2 gigether-options redundant-parent reth2
user@host# set interfaces xe-4/2/3 gigether-options redundant-parent reth1
```
8. Configure the redundant Ethernet interfaces to redundancy-group 1.

```plaintext
[primary:node0][edit]
user@host# set interfaces reth0 redundant-ether-options redundancy-group 1
user@host# set interfaces reth0 unit 0 family inet address 192.0.2.1/24
user@host# set interfaces reth1 redundant-ether-options redundancy-group 1
user@host# set interfaces reth1 unit 0 family inet address 198.51.100.1/24
user@host# set interfaces reth2 redundant-ether-options redundancy-group 1
user@host# set interfaces reth2 unit 0 family inet address 203.0.113.1/24
```

9. Create security zone and assign interfaces to zone.

```plaintext
user@host# set security zones security-zone HOST host-inbound-traffic
user@host# set security zones security-zone HOST host-inbound-traffic system-services any-service
user@host# set security zones security-zone HOST host-inbound-traffic protocols all
user@host# set security zones security-zone HOST interfaces all
```

Results  From configuration mode, confirm your configuration by entering the `show security chassis cluster` and `show interfaces` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```plaintext
chassis {
 cluster {
 reth-count 10;
 redundancy-group 0 {
 node 0 priority 254;
 node 1 priority 1;
 }
 redundancy-group 1 {
 node 0 priority 200;
 node 1 priority 199;
 ip-monitoring {
 global-weight 255;
 global-threshold 240;
 retry-interval 3;
 retry-count 10;
 family {
 inet {
 192.0.2.2 {
 weight 80;
 interface reth0.0 secondary-ip-address 192.0.2.12;
 }
 198.51.100.2 {
 weight 80;
 interface reth1.0 secondary-ip-address 198.51.100.2;
 }
 203.0.113.2 {
 weight 80;
 interface reth2.0 secondary-ip-address 203.0.113.2;
 }
 }
 }
 }
 }
 }
}
```
interfaces {
  xe-1/2/1 {
    gigether-options {
      redundant-parent reth0;
    }
  }
  xe-1/2/2 {
    gigether-options {
      redundant-parent reth2;
    }
  }
  xe-1/2/3 {
    gigether-options {
      redundant-parent reth1;
    }
  }
  xe-4/2/1 {
    gigether-options {
      redundant-parent reth0;
    }
  }
  xe-4/2/2 {
    gigether-options {
      redundant-parent reth2;
    }
  }
  xe-4/2/3 {
    gigether-options {
      redundant-parent reth1;
    }
  }
}
fab0 {
  fabric-options {
    member-interfaces {
      xe-1/2/0;
    }
  }
}
fab1 {
  fabric-options {
    member-interfaces {
      xe-4/2/0;
    }
  }
}
reth0 {
  redundant-ether-options {
    redundancy-group 1;
  }
  unit 0 {
    family inet {
      address 192.0.2.1/24;
    }
  }
}
If you are done configuring the device, enter commit from configuration mode.

Verification

Confirm the configuration is working properly.

- Verifying IP Monitoring Status on page 222

Verifying IP Monitoring Status

Purpose

Verify the IP status being monitored from both nodes and the failure count for both nodes.
**Action**  From operational mode, enter the `show chassis cluster ip-monitoring status` command.

```
show chassis cluster ip-monitoring status
```

node0:

```
Redundancy group: 1
Global weight: 255
Global threshold: 240
Current threshold: 240

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Weight</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.0.113.2</td>
<td>reachable</td>
<td>1</td>
<td>80</td>
<td>n/a</td>
</tr>
<tr>
<td>198.51.100.2</td>
<td>reachable</td>
<td>1</td>
<td>80</td>
<td>n/a</td>
</tr>
<tr>
<td>192.0.2.2</td>
<td>reachable</td>
<td>1</td>
<td>80</td>
<td>n/a</td>
</tr>
</tbody>
</table>
```

node1:

```
Redundancy group: 1
Global weight: 255
Global threshold: 240
Current threshold: 240

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Weight</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.0.113.2</td>
<td>reachable</td>
<td>2</td>
<td>80</td>
<td>n/a</td>
</tr>
<tr>
<td>198.51.100.2</td>
<td>reachable</td>
<td>1</td>
<td>80</td>
<td>n/a</td>
</tr>
<tr>
<td>192.0.2.2</td>
<td>reachable</td>
<td>2</td>
<td>80</td>
<td>n/a</td>
</tr>
</tbody>
</table>
```

**Meaning**  All the monitored IP addresses are reachable.

**Related Documentation**  
- [IP Monitoring Overview on page 214](#)
- [Example: Configuring an Active/Passive Chassis Cluster on SRX Series Services Gateways on page 302](#)
Configuring Chassis Cluster Failover Parameters

- Understanding Chassis Cluster Control Link Heartbeats, Failure, and Recovery on page 225
- Example: Configuring Chassis Cluster Control Link Recovery on page 228

Understanding Chassis Cluster Control Link Heartbeats, Failure, and Recovery

**Supported Platforms** SRX5600, SRX5800, vSRX

Junos OS transmits heartbeat signals over the control link at a configured interval. The system uses heartbeat transmissions to determine the “health” of the control link. If the number of missed heartbeats has reached the configured threshold, the system assesses whether a failure condition exists.

**Understanding Chassis Cluster Control Link Heartbeats**

You specify the heartbeat threshold and heartbeat interval when you configure the chassis cluster.

The system monitors the control link's status by default.

For dual control links, which are supported on SRX5600 and SRX5800 lines, the Juniper Services Redundancy Protocol process (jsrpd) sends and receives the control heartbeat messages on both control links. As long as heartbeats are received on one of the control links, Junos OS considers the other node to be alive.

The product of the **heartbeat-threshold** option and the **heartbeat-interval** option defines the wait time before failover is triggered. The default values of these options produce a wait time of 3 seconds. A heartbeat-threshold of 5 and a heartbeat-interval of 1000 milliseconds would yield a wait time of 5 seconds. Setting the heartbeat-threshold to 4 and the heartbeat-interval to 1250 milliseconds would also yield a wait time of 5 seconds.

In a chassis cluster environment, as the number of logical interfaces is scaled upward, the time before a failover is triggered needs to be increased accordingly. At maximum capacity on an SRX5400, SRX5600, or an SRX5800 device, we recommend that you increase the configured time before failover to at least 5 seconds. In a large chassis cluster configuration on an SRX3400 or SRX3600 device, we recommend increasing the wait to 8 seconds.
Understanding Chassis Cluster Control Link Failure and Recovery

If the control link fails, Junos OS changes the operating state of the secondary node to ineligible for a 180-second countdown. If the fabric link also fails during the 180 seconds, Junos OS changes the secondary node to primary; otherwise, after 180 seconds the secondary node state changes to disabled.

When the control link is down, a system log message is generated.

A control link failure is defined as not receiving heartbeats over the control link while heartbeats are still being received over the fabric link.

In the event of a legitimate control link failure, redundancy group 0 remains primary on the node on which it is currently primary, inactive redundancy groups x on the primary node become active, and the secondary node enters a disabled state.

NOTE: When the secondary node is disabled, you can still log in to the management port and run diagnostics.

To determine if a legitimate control link failure has occurred, the system relies on redundant liveliness signals sent across both the control link and the fabric link.

The system periodically transmits probes over the fabric link and heartbeat signals over the control link. Probes and heartbeat signals share a common sequence number that maps them to a unique time event. Junos OS identifies a legitimate control link failure if the following two conditions exist:

- The threshold number of heartbeats were lost.
- At least one probe with a sequence number corresponding to that of a missing heartbeat signal was received on the fabric link.

If the control link fails, the 180-second countdown begins and the secondary node state is ineligible. If the fabric link fails before the 180-second countdown reaches zero, the secondary node becomes primary because the loss of both links is interpreted by the system to indicate that the other node is dead. Because concurrent loss of both control and fabric links means that the nodes are no longer synchronizing states nor comparing priorities, both nodes might thus temporarily become primary, which is not a stable operating state. However, once the control link is reestablished, the node with the higher priority value automatically becomes primary, the other node becomes secondary, and the cluster returns to normal operation.

When a legitimate control link failure occurs, the following conditions apply:

- Redundancy group 0 remains primary on the node on which it is currently primary (and thus its Routing Engine remains active), and all redundancy groups x on the node become primary.

If the system cannot determine which Routing Engine is primary, the node with the higher priority value for redundancy group 0 is primary and its Routing Engine is active.
(You configure the priority for each node when you configure the `redundancy-group` statement for redundancy group 0.)

- The system disables the secondary node.

To recover a device from the disabled mode, you must reboot the device. When you reboot the disabled node, the node synchronizes its dynamic state with the primary node.

**NOTE:** If you make any changes to the configuration while the secondary node is disabled, execute the commit command to synchronize the configuration after you reboot the node. If you did not make configuration changes, the configuration file remains synchronized with that of the primary node.

You cannot enable preemption for redundancy group 0. If you want to change the primary node for redundancy group 0, you must do a manual failover.

When you use dual control links (supported on SRX5600 and SRX5800 devices), note the following conditions:

- Host inbound or outbound traffic can be impacted for up to 3 seconds during a control link failure. For example, consider a case where redundancy group 0 is primary on node 0 and there is a Telnet session to the Routing Engine through a network interface port on node 1. If the currently active control link fails, the Telnet session will lose packets for 3 seconds, until this failure is detected.

- A control link failure that occurs while the commit process is running across two nodes might lead to commit failure. In this situation, run the commit command again after 3 seconds.

**NOTE:** For SRX5600 and SRX5800 devices, dual control links require a second Routing Engine on each node of the chassis cluster.

You can specify that control link recovery be done automatically by the system by setting the `control-link-recovery` statement. In this case, once the system determines that the control link is healthy, it issues an automatic reboot on the disabled node. When the disabled node reboots, the node joins the cluster again.

**Related Documentation**
- Understanding Chassis Cluster Dual Control Links on page 167
- Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster on page 168
- Example: Configuring Chassis Cluster Control Ports for Dual Control Links on page 169
- Example: Configuring Chassis Cluster Control Link Recovery on page 228
Example: Configuring Chassis Cluster Control Link Recovery

Supported Platforms

SRX Series, vSRX

This example shows how to enable control link recovery, which allows the system to automatically take over after the control link recovers from a failure.

- Requirements on page 228
- Overview on page 228
- Configuration on page 228

Requirements

Before you begin:

- Understand chassis cluster control links. See Understanding Chassis Cluster Control Plane and Control Links.
- Understand chassis cluster dual control links. See “Understanding Chassis Cluster Dual Control Links” on page 167.
- Connect dual control links in a chassis cluster. See “Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster” on page 168.

Overview

You can enable the system to perform control link recovery automatically. After the control link recovers, the system takes the following actions:

- It checks whether it receives at least 30 consecutive heartbeats on the control link or, in the case of dual control links (SRX5600 and SRX5800 devices only), on either control link. This is to ensure that the control link is not flapping and is healthy.
- After it determines that the control link is healthy, the system issues an automatic reboot on the node that was disabled when the control link failed. When the disabled node reboots, it can rejoin the cluster. There is no need for any manual intervention.

In this example, you enable chassis cluster control link recovery.

Configuration

Step-by-Step Procedure

To enable chassis cluster control-link-recovery:

1. Enable control link recovery.
   
   {primary:node0}[edit]
   user@host# set chassis cluster control-link-recovery

2. If you are done configuring the device, commit the configuration.

   {primary:node0}[edit]
   user@host# commit
Related Documentation

- Understanding Chassis Cluster Failover Parameters on page 225
- Understanding Chassis Cluster Dual Control Links on page 167
- Connecting Dual Control Links for SRX Series Devices in a Chassis Cluster on page 168
- Example: Configuring Chassis Cluster Control Ports for Dual Control Links on page 169
Managing Chassis Cluster Redundancy Group Failover

- Understanding Chassis Cluster Redundancy Group Failover on page 231
- Example: Configuring a Chassis Cluster with a Dampening Time Between Back-to-Back Redundancy Group Failovers on page 232
- Understanding Chassis Cluster Redundancy Group Manual Failover on page 233
- Understanding SNMP Failover Traps for Chassis Cluster Redundancy Group Failover on page 235
- Initiating a Chassis Cluster Manual Redundancy Group Failover on page 236
- Verifying Chassis Cluster Failover Status on page 239
- Clearing Chassis Cluster Failover Status on page 240

Understanding Chassis Cluster Redundancy Group Failover

**Supported Platforms**

SRX Series, vSRX

Chassis cluster employs a number of highly efficient failover mechanisms that promote high availability to increase your system's overall reliability and productivity.

A redundancy group is a collection of objects that fail over as a group. Each redundancy group monitors a set of objects (physical interfaces), and each monitored object is assigned a weight. Each redundancy group has an initial threshold of 255. When a monitored object fails, the weight of the object is subtracted from the threshold value of the redundancy group. When the threshold value reaches zero, the redundancy group fails over to the other node. As a result, all the objects associated with the redundancy group fail over as well. Graceful restart of the routing protocols enables the SRX Series device to minimize traffic disruption during a failover.

Back-to-back failovers of a redundancy group in a short interval can cause the cluster to exhibit unpredictable behavior. To prevent such unpredictable behavior, configure a dampening time between failovers. On failover, the previous primary node of a redundancy group moves to the secondary-hold state and stays in the secondary-hold state until the hold-down interval expires. After the hold-down interval expires, the previous primary node moves to the secondary state. If a failure occurs on the new primary node during the hold-down interval, the system fails over immediately and overrides the hold-down interval.
The default dampening time for a redundancy group 0 is 300 seconds (5 minutes) and is configurable up to 1800 seconds with the `hold-down-interval` statement. For some configurations, such as those with a large number of routes or logical interfaces, the default interval or the user-configured interval might not be sufficient. In such cases, the system automatically extends the dampening time in increments of 60 seconds until the system is ready for failover.

Redundancy groups x (redundancy groups numbered 1 through 128) have a default dampening time of 1 second, with a range from 0 through 1800 seconds.

The hold-down interval affects manual failovers, as well as automatic failovers associated with monitoring failures.

On SRX Series devices, chassis cluster failover performance is optimized to scale with more logical interfaces. Previously, during redundancy group failover, gratuitous arp (GARP) is sent by the Juniper Services Redundancy Protocol (jsrpd) process running in the Routing Engine on each logical interface to steer the traffic to the appropriate node. With logical interface scaling, the Routing Engine becomes the checkpoint and GARP is directly sent from the Services Processing Unit (SPU).

**Related Documentation**
- Example: Configuring Chassis Cluster Redundancy Groups on page 123
- Understanding Chassis Cluster Redundancy Group Manual Failover on page 233
- Understanding SNMP Failover Traps for Chassis Cluster Redundancy Group Failover on page 235
- Initiating a Chassis Cluster Manual Redundancy Group Failover on page 236

**Example: Configuring a Chassis Cluster with a Dampening Time Between Back-to-Back Redundancy Group Failovers**

**Supported Platforms**
SRX Series, vSRX

This example shows how to configure the dampening time between back-to-back redundancy group failovers for a chassis cluster. Back-to-back redundancy group failovers that occur too quickly can cause a chassis cluster to exhibit unpredictable behavior.

- Requirements on page 232
- Overview on page 233
- Configuration on page 233

**Requirements**

Before you begin:

- Understand redundancy group failover. See “Understanding Chassis Cluster Redundancy Group Failover” on page 231.
Overview

The dampening time is the minimum interval allowed between back-to-back failovers for a redundancy group. This interval affects manual failovers and automatic failovers caused by interface monitoring failures.

In this example, you set the minimum interval allowed between back-to-back failovers to 420 seconds for redundancy group 0.

Configuration

Step-by-Step Procedure

To configure the dampening time between back-to-back redundancy group failovers:

1. Set the dampening time for the redundancy group.

   ```
 [primary:node0][edit]
 user@host# set chassis cluster redundancy-group 0 hold-down-interval 420
   ```

2. If you are done configuring the device, commit the configuration.

   ```
 [primary:node0][edit]
 user@host# commit
   ```

Related Documentation

- Understanding Chassis Cluster Redundancy Groups on page 119
- Example: Configuring Chassis Cluster Redundancy Groups on page 123
- Understanding Chassis Cluster Redundancy Group Manual Failover on page 233
- Understanding SNMP Failover Traps for Chassis Cluster Redundancy Group Failover on page 235
- Initiating a Chassis Cluster Manual Redundancy Group Failover on page 236

Understanding Chassis Cluster Redundancy Group Manual Failover

Supported Platforms

SRX Series, vSRX

You can initiate a redundancy group $x$ (redundancy groups numbered 1 through 128) failover manually. A manual failover applies until a failback event occurs.

For example, suppose that you manually do a redundancy group 1 failover from node 0 to node 1. Then an interface that redundancy group 1 is monitoring fails, dropping the threshold value of the new primary redundancy group to zero. This event is considered a failback event, and the system returns control to the original redundancy group.

You can also initiate a redundancy group 0 failover manually if you want to change the primary node for redundancy group 0. You cannot enable preemption for redundancy group 0.
NOTE: If preempt is added to a redundancy group configuration, the device with the higher priority in the group can initiate a failover to become master. By default, preemption is disabled. For more information on preemption, see preempt (Chassis Cluster).

When you do a manual failover for redundancy group 0, the node in the primary state transitions to the secondary-hold state. The node stays in the secondary-hold state for the default or configured time (a minimum of 300 seconds) and then transitions to the secondary state.

State transitions in cases where one node is in the secondary-hold state and the other node reboots, or the control link connection or fabric link connection is lost to that node, are described as follows:

- Reboot case—The node in the secondary-hold state transitions to the primary state; the other node goes dead (inactive).
- Control link failure case—The node in the secondary-hold state transitions to the ineligible state and then to a disabled state; the other node transitions to the primary state.
- Fabric link failure case—The node in the secondary-hold state transitions directly to the ineligible state.

NOTE: Starting with Junos OS Release 12.1X46-D20 and Junos OS Release 17.3R1, fabric monitoring is enabled by default. With this enabling, the node transitions directly to the ineligible state in case of fabric link failures.

NOTE: Starting with Junos OS Release 12.1X47-D10 and Junos OS Release 17.3R1, fabric monitoring is enabled by default. With this enabling, the node transitions directly to the ineligible state in case of fabric link failures.

Keep in mind that during an in-service software upgrade (ISSU), the transitions described here cannot happen. Instead, the other (primary) node transitions directly to the secondary state because Juniper Networks releases earlier than 10.0 do not interpret the secondary-hold state. While you start an ISSU, if one of the nodes has one or more redundancy groups in the secondary-hold state, you must wait for them to move to the secondary state before you can do manual failovers to make all the redundancy groups be primary on one node.

CAUTION: Be cautious and judicious in your use of redundancy group 0 manual failovers. A redundancy group 0 failover implies a Routing Engine failover, in which case all processes running on the primary node are killed and then spawned on the new master Routing Engine. This failover could
result in loss of state, such as routing state, and degrade performance by introducing system churn.

**NOTE:** In some Junos OS releases, for redundancy groups x, it is possible to do a manual failover on a node that has 0 priority. We recommend that you use the show chassis cluster status command to check the redundancy group node priorities before doing the manual failover. However, from Junos OS Releases 12.1X44-D25, 12.1X45-D20, 12.1X46-D10, and 12.1X47-D10 and later, the readiness check mechanism for manual failover is enhanced to be more restrictive, so that you cannot set manual failover to a node in a redundancy group that has 0 priority. This enhancement prevents traffic from being dropped unexpectedly due to a failover attempt to a 0 priority node, which is not ready to accept traffic.

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1X47-D10</td>
<td>Starting with Junos OS Release 12.1X47-D10 and Junos OS Release 17.3R1, fabric monitoring is enabled by default. With this enabling, the node transitions directly to the ineligible state in case of fabric link failures.</td>
</tr>
<tr>
<td>12.1X46-D20</td>
<td>Starting with Junos OS Release 12.1X46-D20 and Junos OS Release 17.3R1, fabric monitoring is enabled by default. With this enabling, the node transitions directly to the ineligible state in case of fabric link failures.</td>
</tr>
</tbody>
</table>

**Related Documentation**
- Understanding Chassis Cluster Redundancy Group Failover on page 231
- Initiating a Chassis Cluster Manual Redundancy Group Failover on page 236
- Example: Configuring a Chassis Cluster with a Dampening Time Between Back-to-Back Redundancy Group Failovers on page 232
- Understanding SNMP Failover Traps for Chassis Cluster Redundancy Group Failover on page 235
- Understanding Chassis Cluster Redundant Ethernet Interfaces on page 127

**Understanding SNMP Failover Traps for Chassis Cluster Redundancy Group Failover**

**Supported Platforms** SRX Series, vSRX

Chassis clustering supports SNMP traps, which are triggered whenever there is a redundancy group failover.

The trap message can help you troubleshoot failovers. It contains the following information:
The cluster ID and node ID

The reason for the failover

The redundancy group that is involved in the failover

The redundancy group's previous state and current state

These are the different states that a cluster can be in at any given instant: hold, primary, secondary-hold, secondary, ineligible, and disabled. Traps are generated for the following state transitions (only a transition from a hold state does not trigger a trap):

- primary <-- secondary
- primary --> secondary-hold
- secondary-hold --> secondary
- secondary --> ineligible
- ineligible --> disabled
- ineligible --> primary
- secondary --> disabled

A transition can be triggered because of any event, such as interface monitoring, SPU monitoring, failures, and manual failovers.

The trap is forwarded over the control link if the outgoing interface is on a node different from the node on the Routing Engine that generates the trap.

You can specify that a trace log be generated by setting the `traceoptions flag snmp` statement.

### Related Documentation

- Understanding Chassis Cluster Redundancy Group Manual Failover on page 233
- Initiating a Chassis Cluster Manual Redundancy Group Failover on page 236
- Example: Configuring a Chassis Cluster with a Dampening Time Between Back-to-Back Redundancy Group Failovers on page 232
- Understanding Chassis Cluster Redundant Ethernet Interfaces on page 127

### Initiating a Chassis Cluster Manual Redundancy Group Failover

**Supported Platforms**

SRX Series, vSRX

You can initiate a failover manually with the `request` command. A manual failover bumps up the priority of the redundancy group for that member to 255.

Before you begin, complete the following tasks:

- Example: Configuring Chassis Cluster Redundancy Groups on page 123
- Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses on page 131
Example: Configuring a Chassis Cluster with a Dampening Time Between Back-to-Back Redundancy Group Failovers on page 232

CAUTION: Be cautious and judicious in your use of redundancy group 0 manual failovers. A redundancy group 0 failover implies a Routing Engine (RE) failover, in which case all processes running on the primary node are killed and then spawned on the new master Routing Engine (RE). This failover could result in loss of state, such as routing state, and degrade performance by introducing system churn.

NOTE: For redundancy groups x (redundancy groups numbered 1 through 128), it is possible to do a manual failover on a node that has 0 priority. We recommend that you check the redundancy group node priorities before doing the manual failover.

Use the show command to display the status of nodes in the cluster:

{primary:node0}
user@host> show chassis cluster status redundancy-group 0
Cluster ID: 9

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Output to this command indicates that node 0 is primary.

Use the request command to trigger a failover and make node 1 primary:

{primary:node0}
user@host> request chassis cluster failover redundancy-group 0 node 1
Initiated manual failover for redundancy group 0

Use the show command to display the new status of nodes in the cluster:

{secondary-hold:node0}
user@host> show chassis cluster status redundancy-group 0
Cluster ID: 9

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>secondary-hold</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>node1</td>
<td>255</td>
<td>primary</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Output to this command shows that node 1 is now primary and node 0 is in the secondary-hold state. After 5 minutes, node 0 will transition to the secondary state.
You can reset the failover for redundancy groups by using the request command. This change is propagated across the cluster.

```
{secondary-hold:node0}
user@host> request chassis cluster failover reset redundancy-group 0 node0:
--
No reset required for redundancy group 0.
node1:
--
Successfully reset manual failover for redundancy group 0
```

You cannot trigger a back-to-back failover until the 5-minute interval expires.

```
{secondary-hold:node0}
user@host> request chassis cluster failover redundancy-group 0 node 0 node0:
--
Manual failover is not permitted as redundancy-group 0 on node0 is in secondary-hold state.
```

Use the show command to display the new status of nodes in the cluster:

```
{secondary-hold:node0}
user@host> show chassis cluster status redundancy-group 0
Cluster ID: 9
Node Priority Status Preempt Manual failover
Redundancy group: 0 , Failover count: 2
 node0 254 secondary-hold no no
 node1 1 primary no no
```

Output to this command shows that a back-to-back failover has not occurred for either node.

After doing a manual failover, you must issue the reset failover command before requesting another failover.

When the primary node fails and comes back up, election of the primary node is done based on regular criteria (priority and preempt).

### Related Documentation
- Understanding Chassis Cluster Redundancy Group Manual Failover on page 233
- Example: Configuring a Chassis Cluster with a Dampening Time Between Back-to-Back Redundancy Group Failovers on page 232
- Understanding SNMP Failover Traps for Chassis Cluster Redundancy Group Failover on page 235
- Understanding Chassis Cluster Redundant Ethernet Interfaces on page 127
Verifying Chassis Cluster Failover Status

Supported Platforms  SRX Series, vSRX

Purpose  Display the failover status of a chassis cluster.

Action  From the CLI, enter the `show chassis cluster status` command:

```{primary:node1}
user@host> show chassis cluster status
Cluster ID: 3

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>254</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>2</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy-group: 0, Failover count: 1
```

```{primary:node1}
node0 | 254 | primary | no | no |
node1 | 1 | secondary | no | no |
```

```{primary:node1}
user@host> show chassis cluster status
Cluster ID: 15

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>0</td>
<td>lost</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Redundancy group: 0, Failover count: 5
```

```{primary:node1}
node0 | 101 | primary | no | no |
node1 | 0 | lost | n/a | n/a |
```

```{primary:node1}
user@host> show chassis cluster status
Cluster ID: 15

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>0</td>
<td>unavailable</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Redundancy group: 0, Failover count: 5
```

```{primary:node1}
node0 | 101 | primary | no | no |
node1 | 0 | unavailable | n/a | n/a |
```

Related Documentation

- Initiating a Chassis Cluster Manual Redundancy Group Failover on page 236
- Example: Configuring the Number of Redundant Ethernet Interfaces in a Chassis Cluster on page 136
- Verifying a Chassis Cluster Configuration on page 161
Clearing Chassis Cluster Failover Status

Supported Platforms  SRX Series, vSRX

To clear the failover status of a chassis cluster, enter the `clear chassis cluster failover-count` command from the CLI:

```
{primary:node1}
user@host> clear chassis cluster failover-count
Cleared failover-count for all redundancy-groups
```

Related Documentation

- Initiating a Chassis Cluster Manual Redundancy Group Failover on page 236
- Example: Configuring the Number of Redundant Ethernet Interfaces in a Chassis Cluster on page 136
- Verifying a Chassis Cluster Configuration on page 161
- Verifying Chassis Cluster Statistics on page 161
- Verifying Chassis Cluster Failover Status on page 239
Understanding Chassis Cluster Dual Fabric Links

You can connect two fabric links between each device in a cluster, which provides a redundant fabric link between the members of a cluster. Having two fabric links helps to avoid a possible single point of failure.

When you use dual fabric links, the RTOs and probes are sent on one link and the fabric-forwarded and flow-forwarded packets are sent on the other link. If one fabric link fails, the other fabric link handles the RTOs and probes, as well as the data forwarding. The system selects the physical interface with the lowest slot, PIC, or port number on each node for the RTOs and probes.

For all SRX Series devices, you can connect two fabric links between two devices, effectively reducing the chance of a fabric link failure.

In most SRX Series devices in a chassis cluster, you can configure any pair of Gigabit Ethernet interfaces or any pair of 10-Gigabit interfaces to serve as the fabric between nodes.

For dual fabric links, both of the child interface types should be the same type. For example, both should be Gigabit Ethernet interfaces or 10-Gigabit interfaces.

NOTE: SRX300, SRX320, SRX340, and SRX345 devices support Gigabit Ethernet interfaces only.
Example: Configuring the Chassis Cluster Dual Fabric Links with Matching Slots and Ports

Supported Platforms

SRX Series, vSRX

This example shows how to configure the chassis cluster fabric with dual fabric links with matching slots and ports. The fabric is the back-to-back data connection between the nodes in a cluster. Traffic on one node that needs to be processed on the other node or to exit through an interface on the other node passes over the fabric. Session state information also passes over the fabric.

- Requirements on page 242
- Overview on page 242
- Configuration on page 243
- Verification on page 244

Requirements

Before you begin, set the chassis cluster ID and chassis cluster node ID. See “Example: Setting the Chassis Cluster Node ID and Cluster ID” on page 90.

Overview

In most SRX Series devices in a chassis cluster, you can configure any pair of Gigabit Ethernet interfaces or any pair of 10-Gigabit interfaces to serve as the fabric between nodes.

You cannot configure filters, policies, or services on the fabric interface. Fragmentation is not supported on the fabric link. The MTU size is 8980 bytes. We recommend that no interface in the cluster exceed this MTU size. Jumbo frame support on the member links is enabled by default.

This example illustrates how to configure the fabric link with dual fabric links with matching slots and ports on each node.

A typical configuration is where the dual fabric links are formed with matching slots/ports on each node. That is, ge-3/0/0 on node 0 and ge-10/0/0 on node 1 match, as do ge-0/0/0 on node 0 and ge-7/0/0 on node 1 (the FPC slot offset is 7).

Only the same type of interfaces can be configured as fabric children, and you must configure an equal number of child links for fab0 and fab1.
NOTE: If you are connecting each of the fabric links through a switch, you must enable the jumbo frame feature on the corresponding switch ports. If both of the fabric links are connected through the same switch, the RTO-and-probes pair must be in one virtual LAN (VLAN) and the data pair must be in another VLAN. Here, too, the jumbo frame feature must be enabled on the corresponding switch ports.

Configuration

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```plaintext
[primary:node0][edit]
set interfaces fab0 fabric-options member-interfaces ge-0/0/0
set interfaces fab0 fabric-options member-interfaces ge-3/0/0
set interfaces fab1 fabric-options member-interfaces ge-7/0/0
set interfaces fab1 fabric-options member-interfaces ge-10/0/0
```

**Step-by-Step Procedure**

To configure the chassis cluster fabric with dual fabric links with matching slots and ports on each node:

- Specify the fabric interfaces.

```plaintext
[primary:node0][edit]
user@host# set interfaces fab0 fabric-options member-interfaces ge-0/0/0
user@host# set interfaces fab0 fabric-options member-interfaces ge-3/0/0
user@host# set interfaces fab1 fabric-options member-interfaces ge-7/0/0
user@host# set interfaces fab1 fabric-options member-interfaces ge-10/0/0
```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```plaintext
[primary:node0][edit]
user@host# show interfaces
...
fab0 {
 fabric-options {
 member-interfaces {
 ge-0/0/0;
 ge-3/0/0;
 }
 }
}
```
fab1 {  
    fabric-options {  
        member-interfaces {  
            ge-7/0/0;  
            ge-10/0/0;  
        }  
    }  
}

If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

**Verifying the Chassis Cluster Fabric**

**Purpose**
Verify the chassis cluster fabric.

**Action**
From operational mode, enter the `show interfaces terse | match fab` command.

```
{primary: node0}
user@host> show interfaces terse | match fab
ge-0/0/0.0 up up aenet --> fab0.0
ge-3/0/0.0 up up aenet --> fab0.0
ge-7/0/0.0 up up aenet --> fab1.0
ge-10/0/0.0 up up aenet --> fab1.0
fab0 up up
fab0.0 up up inet 10.17.0.200/24
fab1 up up
fab1.0 up up inet 10.18.0.200/24
```

**Related Documentation**
- Understanding Chassis Cluster Dual Fabric Links on page 241
- Example: Configuring Chassis Cluster Dual Fabric Links with Different Slots and Ports on page 244
- Example: Configuring the Chassis Cluster Fabric Interfaces on page 107

**Example: Configuring Chassis Cluster Dual Fabric Links with Different Slots and Ports**

**Supported Platforms**
SRX Series, vSRX

This example shows how to configure the chassis cluster fabric with dual fabric links with different slots and ports. The fabric is the back-to-back data connection between the nodes in a cluster. Traffic on one node that needs to be processed on the other node or to exit through an interface on the other node passes over the fabric. Session state information also passes over the fabric.

- Requirements on page 245
- Overview on page 245
Requirements

Before you begin, set the chassis cluster ID and chassis cluster node ID. See “Example: Setting the Chassis Cluster Node ID and Cluster ID” on page 90.

Overview

In most SRX Series devices in a chassis cluster, you can configure any pair of Gigabit Ethernet interfaces or any pair of 10-Gigabit interfaces to serve as the fabric between nodes.

You cannot configure filters, policies, or services on the fabric interface. Fragmentation is not supported on the fabric link. The MTU size is 8980 bytes. We recommend that no interface in the cluster exceed this MTU size. Jumbo frame support on the member links is enabled by default.

This example illustrates how to configure the fabric link with dual fabric links with different slots and ports on each node.

Make sure you physically connect the RTO-and-probes link to the RTO-and-probes link on the other node. Likewise, make sure you physically connect the data link to the data link on the other node.

That is, physically connect the following two pairs:

- The node 0 RTO-and-probes link ge-2/1/9 to the node 1 RTO-and-probes link ge-1/0/0
- The node 0 data link ge-2/2/5 to the node 1 data link ge-1/3/0

Only the same type of interfaces can be configured as fabric children, and you must configure an equal number of child links for fab0 and fab1.

NOTE: If you are connecting each of the fabric links through a switch, you must enable the jumbo frame feature on the corresponding switch ports. If both of the fabric links are connected through the same switch, the RTO-and-probes pair must be in one virtual LAN (VLAN) and the data pair must be in another VLAN. Here too, the jumbo frame feature must be enabled on the corresponding switch ports.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```cliconfiguration
{primary:node0}[edit]
set interfaces fab0 fabric-options member-interfaces ge-2/1/9
```

Copyright © 2017, Juniper Networks, Inc.
Step-by-Step Procedure

To configure the chassis cluster fabric with dual fabric links with different slots and ports on each node:

- Specify the fabric interfaces.

```bash
[primary:node0] [edit]
user@host# set interfaces fab0 fabric-options member-interfaces ge-2/2/5
user@host# set interfaces fab0 fabric-options member-interfaces ge-11/0/0
user@host# set interfaces fab0 fabric-options member-interfaces ge-11/3/0
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```bash
[primary:node0] [edit]
user@host# show interfaces
...
fab0 {
 fabric-options {
 member-interfaces {
 ge-2/1/9;
 ge-2/2/5;
 }
 }
}
fab1 {
 fabric-options {
 member-interfaces {
 ge-11/0/0;
 ge-11/3/0;
 }
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

Verifying the Chassis Cluster Fabric

Purpose

Verify the chassis cluster fabric.
Action  
From operational mode, enter the `show interfaces terse | match fab` command.

```
{primary:node0}
user@host> show interfaces terse | match fab
ge-2/1/9.0 up up aenet --> fab0.0
ge-2/2/5.0 up up aenet --> fab0.0
ge-11/0/0.0 up up aenet --> fab1.0
ge-11/3/0.0 up up aenet --> fab1.0
fab0 up up
fab0.0 up up inet 30.17.0.200/24
fab1 up up
fab1.0 up up inet 30.18.0.200/24
```

Related Documentation
- Understanding Chassis Cluster Dual Fabric Links on page 241
- Example: Configuring the Chassis Cluster Dual Fabric Links with Matching Slots and Ports on page 242
CHAPTER 17

Configuring Route Advertisement over Redundant Ethernet Interfaces in a Chassis Cluster

- Understanding Conditional Route Advertising in a Chassis Cluster on page 249
- Example: Configuring Conditional Route Advertising in a Chassis Cluster on page 250

Understanding Conditional Route Advertising in a Chassis Cluster

Supported Platforms

SRX Series, vSRX

Route advertisement over redundant Ethernet interfaces in a chassis cluster is complicated by the fact that the active node in the cluster can change dynamically. Conditional route advertisement enables you to advertise routes in such a way that incoming traffic from the core network is attracted to the Border Gateway Protocol (BGP) interface that exists on the same node as the currently active redundant Ethernet interface. In this way, traffic is processed by the active node and does not traverse the fabric interface between nodes. You do this by manipulating the BGP attribute at the time routes are advertised by BGP.

The goal of conditional route advertisement in a chassis cluster is to ensure that incoming traffic from the upstream network arrives on the node that is on the currently active redundant Ethernet interface. To understand how this works, keep in mind that in a chassis cluster, each node has its own set of interfaces. Figure 45 on page 250 shows a typical scenario, with a redundant Ethernet interface connecting the corporate LAN, through a chassis cluster, to an external network segment.
Figure 45: Conditional Route Advertising

**Related Documentation**
- Example: Configuring Conditional Route Advertising in a Chassis Cluster on page 250
- Verifying a Chassis Cluster Configuration on page 161
- Verifying Chassis Cluster Statistics on page 161

**Example: Configuring Conditional Route Advertising in a Chassis Cluster**

**Supported Platforms**
- SRX Series, vSRX
This example shows how to configure conditional route advertising in a chassis cluster to ensure that incoming traffic from the upstream network arrives on the node that is on the currently active redundant Ethernet interface.

- Requirements on page 251
- Overview on page 251
- Configuration on page 253

Requirements

Before you begin, understand conditional route advertising in a chassis cluster. See “Understanding Conditional Route Advertising in a Chassis Cluster” on page 249.

Overview

As illustrated in Figure 46 on page 252, routing prefixes learned from the redundant Ethernet interface through the IGP are advertised toward the network core using BGP. Two BGP sessions are maintained, one from interface t1-1/0/0 and one from t1-1/0/1 for BGP multihoming. All routing prefixes are advertised on both sessions. Thus, for a route advertised by BGP, learned over a redundant Ethernet interface, if the active redundant Ethernet interface is on the same node as the BGP session, you advertise the route with a “good” BGP attribute.
To achieve this behavior, you apply a policy to BGP before exporting routes. An additional term in the policy match condition determines the current active redundant Ethernet interface child interface of the next hop before making the routing decision. When the active status of a child redundant Ethernet interface changes, BGP reevaluates the export policy for all routes affected.

The condition statement in this configuration works as follows. The command states that any routes evaluated against this condition will pass only if:
• The routes have a redundant Ethernet interface as their next-hop interface.

• The current child interface of the redundant Ethernet interface is active at node 0 (as specified by the `route-active-on node0` keyword).

```
[primary:node0][edit]
user@host# set policy-options condition reth-nh-active-on-0 route-active-on node0
```

Note that a route might have multiple equal-cost next hops, and those next hops might be redundant Ethernet interfaces, regular interfaces, or a combination of both. The route still satisfies the requirement that it has a redundant Ethernet interface as its next hop.

If you use the BGP export policy set for node 0 in the previous example command, only OSPF routes that satisfy the following requirements will be advertised through the session:

• The OSPF routes have a redundant Ethernet interface as their next hop.

• The current child interface of the redundant Ethernet interface is currently active at node 0.

You must also create and apply a separate policy statement for the other BGP session by using this same process.

In addition to the BGP MED attribute, you can define additional BGP attributes, such as origin-code, as-path, and community.

**Configuration**

**CLI Quick Configuration** To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```
[primary:node0][edit]
set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 from protocol ospf
set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 from condition reth-nh-active-on-0
set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 then metric 10
set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 then accept
set policy-options condition reth-nh-active-on-0 route-active-on node0
```

**Step-by-Step Procedure** To configure conditional route advertising:

• Create the policies.

```
[primary:node0][edit]
user@host# set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 from protocol ospf
[primary:node0][edit]
user@host# set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 from condition reth-nh-active-on-0
[primary:node0][edit]
user@host# set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 then metric 10
[primary:node0][edit]
```
user@host# set policy-options policy-statement reth-nh-active-on-0 term ospf-on-0 then accept
[primary:node0][edit]
user@host# set policy-options condition reth-nh-active-on-0 route-active-on node0

Results  From configuration mode, confirm your configuration by entering the show policy-options command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

[primary:node0][edit]
user@host# show policy-options
policy-statement reth-nh-active-on-0 {
    term ospf-on-0 {
        from {
            protocol ospf;
            condition reth-nh-active-on-0;
        }
        then {
            metric 10;
            accept;
        }
    }
}
condition reth-nh-active-on-0 route-active-on node0;

If you are done configuring the device, enter commit from configuration mode.

Related Documentation  •  Understanding Conditional Route Advertising in a Chassis Cluster on page 249
                      •  Verifying a Chassis Cluster Configuration on page 161
                      •  Verifying Chassis Cluster Statistics on page 161
CHAPTER 18

Configuring Redundant Ethernet LAG Interfaces for Increasing High Availability and Overall Throughput

- Understanding Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups on page 255
- Example: Configuring Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups on page 257
- Understanding Chassis Cluster Redundant Ethernet Interface LAG Failover on page 261
- Understanding LACP on Chassis Clusters on page 263
- Example: Configuring LACP on Chassis Clusters on page 265
- Example: Configuring Chassis Cluster Minimum Links on page 268
- Example: Configuring Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups on an SRX5000 Line Device with IOC2 or IOC3 on page 270

Understanding Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups

Supported Platforms  SRX1500, SRX300, SRX320, SRX340, SRX345, SRX550M, vSRX

Support for Ethernet link aggregation groups (LAGs) based on IEEE 802.3ad makes it possible to aggregate physical interfaces on a standalone device. LAGs on standalone devices provide increased interface bandwidth and link availability. Aggregation of links in a chassis cluster allows a redundant Ethernet interface to add more than two physical child interfaces thereby creating a redundant Ethernet interface LAG. A redundant Ethernet interface LAG can have up to eight links per redundant Ethernet interface per node (for a total of 16 links per redundant Ethernet interface).

The aggregated links in a redundant Ethernet interface LAG provide the same bandwidth and redundancy benefits of a LAG on a standalone device with the added advantage of chassis cluster redundancy. A redundant Ethernet interface LAG has two types of simultaneous redundancy. The aggregated links within the redundant Ethernet interface on each node are redundant; if one link in the primary aggregate fails, its traffic load is taken up by the remaining links. If enough child links on the primary node fail, the redundant Ethernet interface LAG can be configured so that all traffic on the entire redundant Ethernet interface fails over to the aggregate link on the other node. You can also configure
interface monitoring for LACP-enabled redundancy group reth child links for added protection.

Aggregated Ethernet interfaces, known as local LAGs, are also supported on either node of a chassis cluster but cannot be added to redundant Ethernet interfaces. Local LAGs are indicated in the system interfaces list using an ae- prefix. Likewise any child interface of an existing local LAG cannot be added to a redundant Ethernet interface and vice versa. Note that it is necessary for the switch (or switches) used to connect the nodes in the cluster to have a LAG link configured and 802.3ad enabled for each LAG on both nodes so that the aggregate links are recognized as such and correctly pass traffic. The total maximum number of combined individual node LAG interfaces (ae) and redundant Ethernet (reth) interfaces per cluster is 128.

NOTE: The redundant Ethernet interface LAG child links from each node in the chassis cluster must be connected to a different LAG at the peer devices. If a single peer switch is used to terminate the redundant Ethernet interface LAG, two separate LAGs must be used in the switch.

Links from different PICs or IOCs and using different cable types (for example, copper and fiber-optic) can be added to the same redundant Ethernet interface LAG but the speed of the interfaces must be the same and all interfaces must be in full duplex mode. We recommend, however, that for purposes of reducing traffic processing overhead, interfaces from the same PIC or IOC be used whenever feasible. Regardless, all interfaces configured in a redundant Ethernet interface LAG share the same virtual MAC address.

NOTE: SRX Series devices interface-monitoring feature allows monitoring of redundant Ethernet/aggregated Ethernet interfaces.

Redundant Ethernet interface configuration also includes a minimum-links setting that allows you to set a minimum number of physical child links on the primary node in a given redundant Ethernet interface that must be working for the interface to be up. The default minimum-links value is 1. Note that the minimum-links setting only monitors child links on the primary node. Redundant Ethernet interfaces do not use physical interfaces on the backup node for either ingress or egress traffic.

Note the following support details:

- Quality of service (QoS) is supported in a redundant Ethernet interface LAG. Guaranteed bandwidth is, however, duplicated across all links. If a link is lost, there is a corresponding loss of guaranteed bandwidth.
- Layer 2 transparent mode and Layer 2 security features are supported in redundant Ethernet interface LAGs.
- Link Aggregation Control Protocol (LACP) is supported in chassis cluster deployments, where aggregated Ethernet interfaces and redundant Ethernet interfaces are supported simultaneously.
Chassis cluster management, control, and fabric interfaces cannot be configured as redundant Ethernet Interface LAGs or added to a redundant Ethernet interface LAG.

Network processor (NP) bundling can coexist with redundant Ethernet interface LAGs on the same cluster. However, assigning an interface simultaneously to a redundant Ethernet interface LAG and a network processor bundle is not supported.

**NOTE:** IOC2 cards do not have network processors but IOC1 cards do have them.

Single flow throughput is limited to the speed of a single physical link regardless of the speed of the aggregate interface.

**NOTE:** On SRX300, SRX320, SRX340, SRX345, and SRX550M devices, the speed mode and link mode configuration is available for member interfaces of a reth interface.

**NOTE:** For more information about Ethernet interface link aggregation and LACP, see the “Aggregated Ethernet” information in the *Interfaces Feature Guide for Security Devices.*

---

**Related Documentation**

- Understanding Chassis Cluster Redundant Ethernet Interfaces on page 127
- Example: Configuring Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups on page 257
- Example: Configuring Chassis Cluster Minimum Links on page 268
- Understanding Conditional Route Advertising in a Chassis Cluster on page 249
- Preparing Your Equipment for Chassis Cluster Formation on page 61

---

**Example: Configuring Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups**

**Supported Platforms** SRX Series, vSRX

This example shows how to configure a redundant Ethernet interface link aggregation group for a chassis cluster. Chassis cluster configuration supports more than one child interface per node in a redundant Ethernet interface. When at least two physical child interface links from each node are included in a redundant Ethernet interface configuration, the interfaces are combined within the redundant Ethernet interface to form a redundant Ethernet interface link aggregation group.

- Requirements on page 258
- Overview on page 258
Requirements

Before you begin:

- Configure chassis cluster redundant interfaces. See “Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses” on page 131.
- Understand chassis cluster redundant Ethernet interface link aggregation groups. See “Understanding Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups” on page 255.

Overview

**NOTE:** For aggregation to take place, the switch used to connect the nodes in the cluster must enable IEEE 802.3ad link aggregation for the redundant Ethernet interface physical child links on each node. Because most switches support IEEE 802.3ad and are also LACP capable, we recommend that you enable LACP on SRX Series devices. In cases where LACP is not available on the switch, you must not enable LACP on SRX Series devices.

In this example, you assign six Ethernet interfaces to reth1 to form the Ethernet interface link aggregation group:

- ge-1/0/1—reth1
- ge-1/0/2—reth1
- ge-1/0/3—reth1
- ge-12/0/1—reth1
- ge-12/0/2—reth1
- ge-12/0/3—reth1

**NOTE:** A maximum of eight physical interfaces per node in a cluster, for a total of 16 child interfaces, can be assigned to a single redundant Ethernet interface when a redundant Ethernet interface LAG is being configured.

**NOTE:** Junos OS supports LACP and LAG on a redundant Ethernet interface, which is called RLAG.
Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

[primary:node0][edit]
set interfaces ge-1/0/1 gigether-options redundant-parent reth1
set interfaces ge-1/0/2 gigether-options redundant-parent reth1
set interfaces ge-1/0/3 gigether-options redundant-parent reth1
set interfaces ge-12/0/1 gigether-options redundant-parent reth1
set interfaces ge-12/0/2 gigether-options redundant-parent reth1
set interfaces ge-12/0/3 gigether-options redundant-parent reth1

Step-by-Step Procedure

To configure a redundant Ethernet interface link aggregation group:

- Assign Ethernet interfaces to reth1.

[primary:node0][edit]
user@host# set interfaces ge-1/0/1 gigether-options redundant-parent reth1
user@host# set interfaces ge-1/0/2 gigether-options redundant-parent reth1
user@host# set interfaces ge-1/0/3 gigether-options redundant-parent reth1
user@host# set interfaces ge-12/0/1 gigether-options redundant-parent reth1
user@host# set interfaces ge-12/0/2 gigether-options redundant-parent reth1
user@host# set interfaces ge-12/0/3 gigether-options redundant-parent reth1

Results

From configuration mode, confirm your configuration by entering the show interfaces reth1 command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this show command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

user@host# show interfaces reth1
...
ge-1/0/1 {
gigether-options {
   redundant-parent reth1;
}
}
ge-1/0/2 {
gigether-options {
   redundant-parent reth1;
}
}
ge-1/0/3 {
gigether-options {
   redundant-parent reth1;
}
}
...
Verification

Verifying the Redundant Ethernet Interface LAG Configuration

Purpose
Verify the redundant Ethernet interface LAG configuration.

Action
From operational mode, enter the `show interfaces terse | match reth` command.

```
{primary:node0}
user@host> show interfaces terse | match reth
ge-1/0/1.0 up down aenet --> reth1.0
ge-1/0/2.0 up down aenet --> reth1.0
ge-1/0/3.0 up down aenet --> reth1.0
ge-12/0/1.0 up down aenet --> reth1.0
ge-12/0/2.0 up down aenet --> reth1.0
ge-12/0/3.0 up down aenet --> reth1.0
reth0 up down
reth0.0 up down inet 10.10.37.214/24
reth1 up down
reth1.0 up down inet
```

Related Documentation
- Understanding Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups on page 255
- Understanding Chassis Cluster Redundant Ethernet Interface LAG Failover on page 261
- Understanding LACP on Chassis Clusters on page 263
- Example: Configuring LACP on Chassis Clusters on page 265
- Example: Configuring Chassis Cluster Minimum Links on page 268
Understanding Chassis Cluster Redundant Ethernet Interface LAG Failover

Supported Platforms: SRX Series, vSRX

To control failover of redundant Ethernet (reth) interfaces, it is important to configure the weights of interface monitoring according to the minimum-links setting. This configuration requires that the weights be equally distributed among the monitored links such that when the number of active physical interface links falls below the minimum-links setting, the computed weight for that redundancy group falls to zero or below zero. This triggers a failover of the redundant Ethernet interfaces link aggregation group (LAG) once the number of physical links falls below the minimum-links value.

Consider a reth0 interface LAG with four underlying physical links and the minimum-links value set as 2. In this case, a failover is triggered only when the number of active physical links is less than 2.

NOTE:
- Interface-monitor and minimum-links values are used to monitor LAG link status and correctly calculate failover weight.
- The minimum-links value is used to keep the redundant Ethernet link status. However, to trigger a failover, interface-monitor must be set.

Configure the underlying interface attached to the redundant Ethernet LAG.

```
{primary:node0}[edit]
user@host# set interfaces ge-0/0/4 gigether-options redundant-parent reth0
user@host# set interfaces ge-0/0/5 gigether-options redundant-parent reth0
user@host# set interfaces ge-0/0/6 gigether-options redundant-parent reth0
user@host# set interfaces ge-0/0/7 gigether-options redundant-parent reth0
```

Specify the minimum number of links for the redundant Ethernet interface as 2.

```
{primary:node0}[edit]
user@host# set interfaces reth0 redundant-ether-options minimum-links 2
```

Set up interface monitoring to monitor the health of the interfaces and trigger redundancy group failover.

The following scenarios provide examples of how to monitor redundant Ethernet LAG failover:

- **Scenario 1: Monitored Interface Weight Is 255 on page 261**
- **Scenario 2: Monitored Interface Weight Is 75 on page 262**
- **Scenario 3: Monitored Interface Weight Is 100 on page 262**

**Scenario 1: Monitored Interface Weight Is 255**

Specify the monitored interface weight as 255 for each underlying interface.

```
{primary:node0}[edit]
```
In this case, although there are three active physical links and the redundant Ethernet LAG could have handled the traffic because of minimum-links configured, one physical link is still down, which triggers a failover based on the computed weight.

**Scenario 2: Monitored Interface Weight Is 75**

Specify the monitored interface weight as 75 for each underlying interface.

```
[primary:node0] [edit]
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/4 weight 75
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/5 weight 75
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/6 weight 75
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/7 weight 75
```

In this case, when three physical links are down, the redundant Ethernet interface will go down due to minimum-links configured. However, the failover will not happen, which in turn will result in traffic outage.

**Scenario 3: Monitored Interface Weight Is 100**

Specify the monitored interface weight as 100 for each underlying interface.

```
[primary:node0] [edit]
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/4 weight 100
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/5 weight 100
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/6 weight 100
user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/7 weight 100
```

In this case, when the three physical links are down, the redundant Ethernet interface will go down because of the minimum-links value. However, at the same time a failover would be triggered because of interface monitoring computed weights, ensuring that there is no traffic disruption.

Of all the three scenarios, scenario 3 illustrates the most ideal way to manage redundant Ethernet LAG failover.

**Related Documentation**

- [Understanding Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups on page 255](#)
You can combine multiple physical Ethernet ports to form a logical point-to-point link, known as a link aggregation group (LAG) or bundle, such that a media access control (MAC) client can treat the LAG as if it were a single link.

LAGs can be established across nodes in a chassis cluster to provide increased interface bandwidth and link availability.

The Link Aggregation Control Protocol (LACP) provides additional functionality for LAGs. LACP is supported in standalone deployments, where aggregated Ethernet interfaces are supported, and in chassis cluster deployments, where aggregated Ethernet interfaces and redundant Ethernet interfaces are supported simultaneously.

You configure LACP on a redundant Ethernet interface by setting the LACP mode for the parent link with the lacp statement. The LACP mode can be off (the default), active, or passive.

This topic contains the following sections:

- Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups on page 263
- Sub-LAGs on page 264
- Supporting Hitless Failover on page 265
- Managing Link Aggregation Control PDUs on page 265

Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups

A redundant Ethernet interface has active and standby links located on two nodes in a chassis cluster. All active links are located on one node, and all standby links are located on the other node. You can configure up to eight active links and eight standby links per node.

When at least two physical child interface links from each node are included in a redundant Ethernet interface configuration, the interfaces are combined within the redundant Ethernet interface to form a redundant Ethernet interface LAG.

Having multiple active redundant Ethernet interface links reduces the possibility of failover. For example, when an active link is out of service, all traffic on this link is distributed to other active redundant Ethernet interface links, instead of triggering a redundant Ethernet active/standby failover.
Aggregated Ethernet interfaces, known as local LAGs, are also supported on either node of a chassis cluster but cannot be added to redundant Ethernet interfaces. Likewise, any child interface of an existing local LAG cannot be added to a redundant Ethernet interface, and vice versa. The total maximum number of combined individual node LAG interfaces (ae) and redundant Ethernet (reth) interfaces per cluster is 128.

However, aggregated Ethernet interfaces and redundant Ethernet interfaces can coexist, because the functionality of a redundant Ethernet interface relies on the Junos OS aggregated Ethernet framework.

For more information, see “Understanding Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups” on page 255.

Minimum Links

Redundant Ethernet interface configuration includes a minimum-links setting that allows you to set a minimum number of physical child links in a redundant Ethernet interface LAG that must be working on the primary node for the interface to be up. The default minimum-links value is 1. When the number of physical links on the primary node in a redundant Ethernet interface falls below the minimum-links value, the interface might be down even if some links are still working. For more information, see “Example: Configuring Chassis Cluster Minimum Links” on page 268.

Sub-LAGs

LACP maintains a point-to-point LAG. Any port connected to the third point is denied. However, a redundant Ethernet interface does connect to two different systems or two remote aggregated Ethernet interfaces by design.

To support LACP on redundant Ethernet interface active and standby links, a redundant Ethernet interface is created automatically to consist of two distinct sub-LAGs, where all active links form an active sub-LAG and all standby links form a standby sub-LAG.

In this model, LACP selection logic is applied and limited to one sub-LAG at a time. In this way, two redundant Ethernet interface sub-LAGs are maintained simultaneously while all the LACP advantages are preserved for each sub-LAG.

It is necessary for the switches used to connect the nodes in the cluster to have a LAG link configured and 802.3ad enabled for each LAG on both nodes so that the aggregate links are recognized as such and correctly pass traffic.

NOTE: The redundant Ethernet interface LAG child links from each node in the chassis cluster must be connected to a different LAG at the peer devices. If a single peer switch is used to terminate the redundant Ethernet interface LAG, two separate LAGs must be used in the switch.
Supporting Hitless Failover

With LACP, the redundant Ethernet interface supports hitless failover between the active and standby links in normal operation. The term *hitless* means that the redundant Ethernet interface state remains up during a failover.

The lacpd process manages both the active and standby links of the redundant Ethernet interfaces. A redundant Ethernet interface state remains up when the number of active up links is more than the number of minimum links configured. Therefore, to support hitless failover, the LACP state on the redundant Ethernet interface standby links must be collected and distributed before failover occurs.

Managing Link Aggregation Control PDUs

The protocol data units (PDUs) contain information about the state of the link. By default, aggregated and redundant Ethernet links do not exchange link aggregation control PDUs.

You can configure PDUs exchange in the following ways:

- Configure Ethernet links to actively transmit link aggregation control PDUs
- Configure Ethernet links to passively transmit PDUs, sending out link aggregation control PDUs only when they are received from the remote end of the same link

The local end of a child link is known as the actor and the remote end of the link is known as the partner. That is, the actor sends link aggregation control PDUs to its protocol partner that convey what the actor knows about its own state and that of the partner’s state.

You configure the interval at which the interfaces on the remote side of the link transmit link aggregation control PDUs by configuring the `periodic` statement on the interfaces on the local side. It is the configuration on the local side that specifies the behavior of the remote side. That is, the remote side transmits link aggregation control PDUs at the specified interval. The interval can be fast (every second) or slow (every 30 seconds).

For more information, see “Example: Configuring LACP on Chassis Clusters” on page 265.

By default, the actor and partner transmit link aggregation control PDUs every second. You can configure different periodic rates on active and passive interfaces. When you configure the active and passive interfaces at different rates, the transmitter honors the receiver’s rate.

Example: Configuring LACP on Chassis Clusters

Supported Platforms: SRX Series
This example shows how to configure LACP on chassis clusters.

- Requirements on page 266
- Overview on page 266
- Configuration on page 267
- Verification on page 267

Requirements

Before you begin:

Complete the tasks such as enabling the chassis cluster, configuring interfaces and redundancy groups. See “SRX Series Chassis Cluster Configuration Overview” on page 62 and “Example: Configuring Chassis Cluster Redundant Ethernet Interfaces” on page 131 for more details.

Overview

You can combine multiple physical Ethernet ports to form a logical point-to-point link, known as a link aggregation group (LAG) or bundle. You configure LACP on a redundant Ethernet interface of SRX series device in chassis cluster.

In this example, you set the LACP mode for the reth1 interface to active and set the link aggregation control PDU transmit interval to slow, which is every 30 seconds.

When you enable LACP, the local and remote sides of the aggregated Ethernet links exchange protocol data units (PDUs), which contain information about the state of the link. You can configure Ethernet links to actively transmit PDUs, or you can configure the links to passively transmit them (sending out LACP PDUs only when they receive them from another link). One side of the link must be configured as active for the link to be up.

Figure 47 on page 266 shows the topology used in this example.

**Figure 47: Topology for LAGs Connecting SRX Series Devices in Chassis Cluster to an EX Series Switch**

In the Figure 47 on page 266, the ge-3/0/0 interface on SRX Series device is connected to ge-0/0/0 interface on EX Series switch and the ge-15/0/0 interface is connected to ge-0/0/1 on EX Series switch. For more information on EX Series switch configuration, see Configuring Aggregated Ethernet LACP (CLI Procedure).
Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see the CLI User Guide.

To configure LACP on chassis clusters:

1. Bind redundant child physical interfaces to reth1.

   [edit interfaces]
   user@host# set interfaces ge-3/0/0 gigether-options redundant-parent reth1
   user@host# set interfaces ge-3/0/1 gigether-options redundant-parent reth1
   user@host# set interfaces ge-15/0/0 gigether-options redundant-parent reth1
   user@host# set interfaces ge-15/0/1 gigether-options redundant-parent reth1

2. Add reth1 to redundancy group 1.

   [edit interfaces]
   user@host# set interfaces reth1 redundant-ether-options redundancy-group 1

3. Set the LACP on reth1.

   [edit interfaces]
   user@host# set interfaces reth1 redundant-ether-options lacp active
   user@host# set interfaces reth1 redundant-ether-options lacp periodic slow

4. Assign an IP address to reth1.

   [edit interfaces]
   user@host# set interfaces reth1 unit 0 family inet address 192.168.2.1/24

5. If you are done configuring the device, commit the configuration.

   [edit interfaces]
   user@host# commit

Verification

Verifying LACP on Redundant Ethernet Interfaces

Display LACP status information for redundant Ethernet interfaces.

Action

From operational mode, enter the show lacp interfaces reth1 command.

```
user@host> show lacp interfaces reth1
```

<table>
<thead>
<tr>
<th>Aggregated interface: reth1</th>
<th>LACP state:</th>
<th>Role</th>
<th>Exp</th>
<th>Def</th>
<th>Dist</th>
<th>Col</th>
<th>Syn</th>
<th>Aggr</th>
<th>Timeout</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-15/0/0</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-15/0/0</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-15/0/1</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-15/0/1</td>
<td>Partner</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td>ge-3/0/0</td>
<td>Actor</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fast</td>
<td>Active</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The output shows redundant Ethernet interface information, such as the following:

- The LACP state—Indicates whether the link in the bundle is an actor (local or near-end of the link) or a partner (remote or far-end of the link).
- The LACP mode—Indicates whether both ends of the aggregated Ethernet interface are enabled (active or passive)—at least one end of the bundle must be active.
- The periodic link aggregation control PDU transmit rate.
- The LACP protocol state—Indicates the link is up if it is collecting and distributing packets.

**Related Documentation**
- Understanding LACP on Chassis Clusters on page 263
- Verifying LACP on Redundant Ethernet Interfaces

**Example: Configuring Chassis Cluster Minimum Links**

**Supported Platforms** SRX Series, vSRX

This example shows how to specify a minimum number of physical links assigned to a redundant Ethernet interface on the primary node that must be working for the interface to be up.

- Requirements on page 268
- Overview on page 269
- Configuration on page 269
- Verification on page 269

**Requirements**

Before you begin:

- Configure redundant Ethernet interfaces. See “Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses” on page 131.
- Understand redundant Ethernet interface link aggregation groups. See “Example: Configuring Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups” on page 257.
Overview

When a redundant Ethernet interface has more than two child links, you can set a minimum number of physical links assigned to the interface on the primary node that must be working for the interface to be up. When the number of physical links on the primary node falls below the minimum-links value, the interface will be down even if some links are still working.

In this example, you specify that three child links on the primary node and bound to reth1 (minimum-links value) be working to prevent the interface from going down. For example, in a redundant Ethernet interface LAG configuration in which six interfaces are assigned to reth1, setting the minimum-links value to 3 means that all reth1 child links on the primary node must be working to prevent the interface’s status from changing to down.

NOTE: Although it is possible to set a minimum-links value for a redundant Ethernet interface with only two child interfaces (one on each node), we do not recommend it.

Configuration

Step-by-Step Procedure

To specify the minimum number of links:

1. Specify the minimum number of links for the redundant Ethernet interface.

   [primary:node0][edit]
   user@host# set interfaces reth1 redundant-ether-options minimum-links 3

2. If you are done configuring the device, commit the configuration.

   [primary:node0][edit]
   user@host# commit

Verification

Verifying the Chassis Cluster Minimum Links Configuration

Purpose
To verify the configuration is working properly, enter the `show interface reth1` command.

Action
From operational mode, enter the `show interfaces reth1` command.

[primary:node0][edit]
user@host> show interfaces reth1
Physical interface: reth1, Enabled, Physical link is Down
   Interface index: 129, SNMP ifIndex: 548
   Link-level type: Ethernet, MTU: 1514, Speed: Unspecified, BPDU Error: None,
   MAC-REWRITE Error: None, Loopback: Disabled, Source Filtering: Disabled,
   Flow control: Disabled, Minimum links needed: 3, Minimum bandwidth needed: 0
   Device flags : Present Running
   Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
Current address: 00:10:db:ff:10:01, Hardware address: 00:10:db:ff:10:01
Last flapped: 2010-09-15 15:54:53 UTC (1w0d 22:07 ago)
Input rate: 0 bps (0 pps)
Output rate: 0 bps (0 pps)

Logical interface reth1.0 (Index 68) (SNMP ifIndex 550)
Flags: Hardware-Down Device-Down SNMP-Traps 0x0 Encapsulation: ENET2
Statistics
Bundle:
Input: 0 0 0 0
Output: 0 0 0 0

Security: Zone: untrust
Allowed host-inbound traffic:
bootp bfd bgp dvmrp igmp ldp mstp nhrp ospf pgm pm rip
router-discovery rsyp sap vrrp dhcp finger ftp tftp
ident-reset http https ike netconf ping reverse-telnet reverse-ssh rlogin
rpm rsh snmp snmp-trap ssh telnet traceroute xnm-clear-text
xnm-ssl lsping ntp sip
Protocol inet, MTU: 1500
Flags: Sendbcast-pkt-to-re

Related Documentation
- Understanding Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups on page 255
- Example: Configuring Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups on page 257
- Understanding Conditional Route Advertising in a Chassis Cluster on page 249

Example: Configuring Chassis Cluster Redundant Ethernet Interface Link Aggregation Groups on an SRX5000 Line Device with IOC2 or IOC3

Supported Platforms
SRX5400, SRX5600, SRX5800

Support for Ethernet link aggregation groups (LAGs) based on IEEE 802.3ad makes it possible to aggregate physical interfaces on a standalone device. LAGs on standalone devices provide increased interface bandwidth and link availability. Aggregation of links in a chassis cluster allows a redundant Ethernet interface to add more than two physical child interfaces, thereby creating a redundant Ethernet interface LAG.

- Requirements on page 270
- Overview on page 271
- Configuration on page 271
- Verification on page 273

Requirements
This example uses the following software and hardware components:

- Junos OS Release 15.1X49-D40 or later for SRX Series devices.
- SRX5800 with IOC2 or IOC3 with Express Path enabled on IOC2 and IOC3. For details, see Example: Configuring SRX5K-MPC3-100G10G (IOC3) and SRX5K-MPC3-40G10G (IOC3) on an SRX5000 Line Device to Support Express Path.
Overview

This example shows how to configure a redundant Ethernet interface link aggregation group and configure LACP on chassis clusters on an SRX Series device using the ports from either IOC2 or IOC3 in Express Path mode. Note that configuring child interfaces by mixing links from both IOC2 and IOC3 is not supported.

The following member links are used in this example:

- xe-1/0/0
- xe-3/0/0
- xe-14/0/0
- xe-16/0/0

Configuration

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, delete, and then copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```plaintext
set chassis cluster reth-count 5
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth0 redundant-ether-options lacp active
set interfaces reth0 redundant-ether-options lacp periodic fast
set interfaces reth0 redundant-ether-options minimum-links 1
set interfaces reth0 unit 0 family inet address 192.0.2.1/24
set interfaces xe-1/0/0 gigether-options redundant-parent reth0
set interfaces xe-3/0/0 gigether-options redundant-parent reth0
set interfaces xe-14/0/0 gigether-options redundant-parent reth0
set interfaces xe-16/0/0 gigether-options redundant-parent reth0
```

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode in CLI User Guide*.

To configure LAG Interfaces:

1. Specify the number of aggregated Ethernet interfaces to be created.
   ```plaintext
 [edit chassis]
 user@host# set chassis cluster reth-count 5
   ```

2. Bind redundant child physical interfaces to reth0.
   ```plaintext
 [edit interfaces]
 user@host# set xe-1/0/0 gigether-options redundant-parent reth0
 user@host# set xe-3/0/0 gigether-options redundant-parent reth0
 user@host# set xe-14/0/0 gigether-options redundant-parent reth0
 user@host# set xe-16/0/0 gigether-options redundant-parent reth0
   ```
3. Add reth0 to redundancy group 1.

   user@host# set reth0 redundant-ether-options redundancy-group 1

4. Assign an IP address to reth0.

   [edit interfaces]
   user@host# set reth0 unit 0 family inet address 192.0.2.1/24

5. Set the LACP on reth0.

   [edit interfaces]
   user@host# set reth0 redundant-ether-options lacp active
   user@host# set reth0 redundant-ether-options lacp periodic fast
   user@host# set reth0 redundant-ether-options minimum-links 1

Results  From configuration mode, confirm your configuration by entering the show interfaces command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

   [edit]
   user@host# show interfaces
   xe-1/0/0 {
     gigether-options {
       redundant-parent reth0;
     }
   }
   xe-3/0/0 {
     gigether-options {
       redundant-parent reth0;
     }
   }
   xe-14/0/0 {
     gigether-options {
       redundant-parent reth0;
     }
   }
   xe-16/0/0 {
     gigether-options {
       redundant-parent reth0;
     }
   }
   reth0 {
     redundant-ether-options {
       lacp {
         active;
         periodic fast;
       }
       minimum-links 1;
     }
     unit 0 {
       family inet {
         address 192.0.2.1/24;
       }
     }
   }
Verification

Verifying LACP on Redundant Ethernet Interfaces

Purpose
Display LACP status information for redundant Ethernet interfaces.

Action
From operational mode, enter the `show lacp interfaces` command to check that LACP has been enabled as active on one end.

```
user@host> show lacp interfaces
Aggregated interface: reth0
LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
xe-16/0/0 Actor No No Yes Yes Yes Yes Fast Active
xe-16/0/0 Partner No No Yes Yes Yes Yes Fast Active
xe-14/0/0 Actor No No Yes Yes Yes Yes Fast Active
xe-14/0/0 Partner No No Yes Yes Yes Yes Fast Active
xe-1/0/0 Actor No No Yes Yes Yes Yes Fast Active
xe-1/0/0 Partner No No Yes Yes Yes Yes Fast Active
xe-3/0/0 Actor No No Yes Yes Yes Yes Fast Active
xe-3/0/0 Partner No No Yes Yes Yes Yes Fast Active
LACP protocol: Receive State Transmit State Mux State
xe-16/0/0 Current Fast periodic Collecting distributing
xe-14/0/0 Current Fast periodic Collecting distributing
xe-1/0/0 Current Slow periodic Collecting distributing
xe-3/0/0 Current Slow periodic Collecting distributing
```

The output indicates that LACP has been set up correctly and is active at one end.

Related Documentation
- Understanding LACP on Chassis Clusters on page 263
- Verifying LACP on Redundant Ethernet Interfaces
Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes

SRX Series, vSRX

When you set up an SRX Series chassis cluster, the SRX Series devices must be identical, including their configuration. The chassis cluster synchronization feature automatically synchronizes the configuration from the primary node to the secondary node when the secondary joins the primary as a cluster. By eliminating the manual work needed to ensure the same configurations on each node in the cluster, this feature reduces expenses.

If you want to disable automatic chassis cluster synchronization between the primary and secondary nodes, you can do so by entering the `set chassis cluster configuration-synchronize no-secondary-bootup-auto` command in configuration mode.

At any time, to reenable automatic chassis cluster synchronization, use the `delete chassis cluster configuration-synchronize no-secondary-bootup-auto` command in configuration mode.

To see whether the automatic chassis cluster synchronization is enabled or not, and to see the status of the synchronization, enter the `show chassis cluster information configuration-synchronization` operational command.

Either the entire configuration from the primary node is applied successfully to the secondary node, or the secondary node retains its original configuration. There is no partial synchronization.
NOTE: If you create a cluster with cluster IDs greater than 16, and then decide to roll back to a previous release image that does not support extended cluster IDs, the system comes up as standalone.

NOTE: If you have a cluster set up and running with an earlier release of Junos OS, you can upgrade to Junos OS Release 12.1X45-D10 and re-create a cluster with cluster IDs greater than 16. However, if for any reason you decide to revert to the previous version of Junos OS that did not support extended cluster IDs, the system comes up with standalone devices after you reboot. However, if the cluster ID set is less than 16 and you roll back to a previous release, the system will come back with the previous setup.

Related Documentation
- Verifying Chassis Cluster Configuration Synchronization Status on page 276
- NTP Time Synchronization on SRX Series Devices on page 277
- Example: Simplifying Network Management by Synchronizing the Primary and Backup Nodes with NTP on page 278

Verifying Chassis Cluster Configuration Synchronization Status

Supported Platforms: SRX Series, vSRX

Purpose: Display the configuration synchronization status of a chassis cluster.

Action: From the CLI, enter the `show chassis cluster information configuration-synchronization` command:

```
{primary:node0}
user@host> show chassis cluster information configuration-synchronization
node0:

Configuration Synchronization:
Status:
 Activation status: Enabled
 Last sync operation: Auto-Sync
 Last sync result: Not needed
 Last sync mgd messages:

 Events:

node1:

Configuration Synchronization:
Status:
 Activation status: Enabled
```
NTP Time Synchronization on SRX Series Devices

Supported Platforms  SRX Series, vSRX

Network Time Protocol (NTP) is used to synchronize the time between the Packet Forwarding Engine and the Routing Engine in a standalone device and between two devices in a chassis cluster.

In both standalone and chassis cluster modes, the primary Routing Engine runs the NTP process to get the time from the external NTP server. Although the secondary Routing Engine runs the NTP process in an attempt to get the time from the external NTP server, this attempt fails because of network issues. For this reason, the secondary Routing Engine uses NTP to get the time from the primary Routing Engine.

Use NTP to:

• Send the time from the primary Routing Engine to the secondary Routing Engine through the chassis cluster control link.

• Get the time from an external NTP server to the primary or a standalone Routing Engine.

• Get the time from the Routing Engine NTP process to the Packet Forwarding Engine.

NOTE: On SRX Series devices, use the command set system processes ntpd-service to configure NTP.

Starting with Junos OS Release 15.1X49-D70 and Junos OS Release 17.3R1, configuring the NTP time adjustment threshold is supported on SRX300, SRX320, SRX340, SRX345, SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, and SRX5800 devices and vSRX instances. This feature allows you to configure and enforce the NTP adjustment threshold.
for the NTP service and helps in improve the security and flexibility of the NTP service protocol.

### Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D70</td>
<td>Starting with Junos OS Release 15.1X49-D70 and Junos OS Release 17.3R1, configuring the NTP time adjustment threshold is supported on SRX300, SRX320, SRX340, SRX345, SRX500, SRX4100, SRX4200, SRX5400, SRX5600, and SRX5800 devices and vSRX instances. This feature allows you to configure and enforce the NTP adjustment threshold for the NTP service and helps in improve the security and flexibility of the NTP service protocol.</td>
</tr>
</tbody>
</table>

### Related Documentation

- Example: Simplifying Network Management by Synchronizing the Primary and Backup Nodes with NTP on page 278
- ntp threshold on page 449
- show system ntp threshold on page 591
- set date ntp on page 575

### Example: Simplifying Network Management by Synchronizing the Primary and Backup Nodes with NTP

**Supported Platforms** SRX Series, vSRX

This example shows how to simplify management by synchronizing the time between two SRX Series devices operating in a chassis cluster. Using a Network Time Protocol (NTP) server, the primary node can synchronize time with the secondary node. NTP is used to synchronize the time between the Packet Forwarding Engine and the Routing Engine in a standalone device and between two devices in a chassis cluster. You need to synchronize the system clocks on both nodes of the SRX Series devices in a chassis cluster in order to manage the following items:

- RTO
- Licenses
- Software updates
- Node failovers
- Analyzing system logs (syslogs)
- Requirements on page 279
- Overview on page 279
- Configuration on page 279
- Verification on page 280
Requirements

This example uses the following hardware and software components:

- SRX Series devices operating in a chassis cluster
- Junos OS Release 12.1X47-D10 or later

Before you begin:

- Understand the basics of the Network Time Protocol. See NTP Overview.

Overview

When SRX Series devices are operating in chassis cluster mode, the secondary node cannot access the external NTP server through the revenue port. Junos OS Release 12.1X47 or later supports synchronization of secondary node time with the primary node through the control link by configuring the NTP server on the primary node.

Topology

Figure 48 on page 279 shows the time synchronization from the peer node using the control link.

Figure 48: Synchronizing Time From Peer Node Through Control Link

In the primary node, the NTP server is reachable. The NTP process on the primary node can synchronize the time from the NTP server, and the secondary node can synchronize the time with the primary node from the control link.

Configuration

- Synchronizing Time from the NTP server on page 280
- Results on page 280

CLI Quick Configuration

To quickly configure this example, and synchronize the time from the NTP server, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

set system ntp server 1.1.1.121
Synchronizing Time from the NTP server

Step-by-Step Procedure
In this example, you configure the primary node to get its time from an NTP server at IP address 1.1.1.121. To synchronize the time from the NTP server:

1. Configure the NTP server.
   ```
 [primary:node0][edit]
 [edit system]
 user@host# set ntp server 1.1.1.121
   ```

2. Commit the configuration.
   ```
 user@host# commit
   ```

Results
From configuration mode, confirm your configuration by entering the `show system ntp` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[primary:node0][edit]
user@host# show system ntp server 1.1.1.121
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification
Confirm that the configuration is working properly.
- Verifying the NTP Configuration on the Primary Node on page 280
- Verifying the NTP Configuration on the Secondary Node on page 282

Verifying the NTP Configuration on the Primary Node

Purpose
Verify that the configuration is working properly.

Action
From operational mode, enter the `show ntp associations` command:

```
user@host> show ntp associations
remote refid st t when poll reach delay offset jitter
==
*1-1-1-121-dynami 10.208.0.50 4 - 63 64 65 4.909 -12.067 2.014
```

From operational mode, enter the `show ntp status` command:

```
user@host> show ntp status
status=0664 leap_none, sync_ntp, 6 events, event_peer/strat_chg,
version="ntpd 4.2.0-a Fri Mar 21 00:50:30 PDT 2014 (1)"
```
Meaning

The output on the primary node shows the NTP association as follows:

- **remote**—Address or name of the remote NTP peer.
- **refid**—Reference identifier of the remote peer. If the reference identifier is not known, this field shows a value of 0.0.0.0.
- **st**—Stratum of the remote peer.
- **t**—Type of peer: b (broadcast), l (local), m (multicast), or u (unicast).
- **when**—When the last packet from the peer was received.
- **poll**—Polling interval, in seconds.
- **reach**—Reachability register, in octal.
- **delay**—Current estimated delay of the peer, in milliseconds.
- **offset**—Current estimated offset of the peer, in milliseconds.
- **jitter**—Magnitude of jitter, in milliseconds.

The output on the primary node shows the NTP status as follows:

- **status**—System status word, a code representing the status items listed.
- **x events**—Number of events that have occurred since the last code change. An event is often the receipt of an NTP polling message.
- **version**—A detailed description of the version of NTP being used.
- **processor**—Current hardware platform and version of the processor.
- **system**—Detailed description of the name and version of the operating system in use.
- **leap**—Number of leap seconds in use.
- **stratum**—Stratum of the peer server. Anything greater than 1 is a secondary reference source, and the number roughly represents the number of hops away from the stratum 1 server. Stratum 1 is a primary reference, such as an atomic clock.
- **precision**—Precision of the peer clock, how precisely the frequency and time can be maintained with this particular timekeeping system.
- **rootdelay**—Total roundtrip delay to the primary reference source, in seconds.
- **rootdispersion**—Maximum error relative to the primary reference source, in seconds.
- **peer**—Identification number of the peer in use.
- **refid**—Reference identifier of the remote peer. If the reference identifier is not known, this field shows a value of 0.0.0.0.
• **reftime**—Local time, in timestamp format, when the local clock was last updated. If the local clock has never been synchronized, the value is zero.

• **poll**—NTP broadcast message polling interval, in seconds.

• **clock**—Current time on the local router clock.

• **state**—Current mode of NTP operation, where 1 is symmetric active, 2 is symmetric passive, 3 is client, 4 is server, and 5 is broadcast.

• **offset**—Current estimated offset of the peer, in milliseconds. Indicates the time difference between the reference clock and the local clock.

• **frequency**—Frequency of the clock.

• **jitter**—Magnitude of jitter, in milliseconds.

• **stability**—Measurement of how well this clock can maintain a constant frequency.

---

**Verifying the NTP Configuration on the Secondary Node**

**Purpose**
Verify that the configuration is working properly.

**Action**
From operational mode, enter the `show ntp associations` command:

```
user@host> show ntp associations
remote refid st t when poll reach delay offset jitter

 1-1-1-121-dynam .INIT. 16 - - 1024 0 0.000 0.000 4000.00
*129.96.0.1 1.1.1.121 5 u 32 64 377 0.417 0.760 1.204
```

From operational mode, enter the `show ntp status` command:

```
user@host> show ntp status
status=0664 leap_none, sync_ntp, 6 events, event_peer/strat_chg,
version="ntpd 4.2.0-a Thu Mar 13 01:53:03 PDT 2014 (1)",
processor="i386", system="JUNOS12.1I20140312_srx_12q1_x47.2-635305",
leap=00, stratum=12, precision=-20, rootdelay=2.408,
rootdispersion=892.758, peer=51948, refid=1.1.1.121,
reftime=d6d646bb.853d2f42 Fri, Mar 21 2014 13:03:55.520, poll=6,
clock=d6d647bc.e8f28b2f Fri, Mar 21 2014 13:08:12.909, state=4,
offset=-1.126, frequency=-62.564, jitter=0.617, stability=0.002
```

**Meaning**
The output on the secondary node shows the NTP association as follows:

• **remote**—Address or name of the remote NTP peer.

• **refid**—Reference identifier of the remote peer. If the reference identifier is not known, this field shows a value of 0.0.0.0.

• **st**—Stratum of the remote peer.

• **t**—Type of peer: b (broadcast), l (local), m (multicast), or u (unicast).
• **when**—When the last packet from the peer was received.
• **poll**—Polling interval, in seconds.
• **reach**—Reachability register, in octal.
• **delay**—Current estimated delay of the peer, in milliseconds.
• **offset**—Current estimated offset of the peer, in milliseconds.
• **jitter**—Magnitude of jitter, in milliseconds.

The output on the secondary node shows the NTP status as follows:

• **status**—System status word, a code representing the status items listed.
• **x events**—Number of events that have occurred since the last code change. An event is often the receipt of an NTP polling message.
• **version**—A detailed description of the version of NTP being used.
• **processor**—Current hardware platform and version of the processor.
• **system**—Detailed description of the name and version of the operating system in use.
• **leap**—Number of leap seconds in use.
• **stratum**—Stratum of the peer server. Anything greater than 1 is a secondary reference source, and the number roughly represents the number of hops away from the stratum 1 server. Stratum 1 is a primary reference, such as an atomic clock.
• **precision**—Precision of the peer clock, how precisely the frequency and time can be maintained with this particular timekeeping system.
• **rootdelay**—Total roundtrip delay to the primary reference source, in seconds.
• **rootdispersion**—Maximum error relative to the primary reference source, in seconds.
• **peer**—Identification number of the peer in use.
• **refid**—Reference identifier of the remote peer. If the reference identifier is not known, this field shows a value of 0.0.0.0.
• **reftime**—Local time, in timestamp format, when the local clock was last updated. If the local clock has never been synchronized, the value is zero.
• **poll**—NTP broadcast message polling interval, in seconds.
• **clock**—Current time on the local router clock.
• **state**—Current mode of NTP operation, where 1 is symmetric active, 2 is symmetric passive, 3 is client, 4 is server, and 5 is broadcast.
• **offset**—Current estimated offset of the peer, in milliseconds. Indicates the time difference between the reference clock and the local clock.
• **frequency**—Frequency of the clock.
• **jitter**—Magnitude of jitter, in milliseconds.
• **stability**—Measurement of how well this clock can maintain a constant frequency.
Related Documentation

- Time Management Routing Guide for Administration Devices
- NTP Time Synchronization on SRX Series Devices on page 277
- Verifying Chassis Cluster Configuration Synchronization Status on page 276
PART 4

Additional Chassis Cluster Configurations

- Configuring Active/Passive Chassis Cluster Deployments on page 287
- Enabling Multicast Routing or Asymmetric Routing on page 337
- Configuring Chassis Cluster Layer 2 Ethernet Switching on page 353
- Configuring Media Access Control Security (MACsec) on page 361
CHAPTER 20

Configuring Active/Passive Chassis Cluster Deployments

- Understanding Active/Passive Chassis Cluster Deployment on page 287
- Example: Configuring an Active/Passive Chassis Cluster Pair (CLI) on page 288
- Example: Configuring an Active/Passive Chassis Cluster Pair (J-Web) on page 300
- Example: Configuring an Active/Passive Chassis Cluster on SRX Series Services Gateways on page 302
- Understanding Active/Passive Chassis Cluster Deployment with an IPsec Tunnel on page 317
- Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel on page 318
- Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel (J-Web) on page 334

Understanding Active/Passive Chassis Cluster Deployment

**Supported Platforms**  
SRX Series, vSRX

In this case, a single device in the cluster is used to route all traffic while the other device is used only in the event of a failure (see Figure 49 on page 288). When a failure occurs, the backup device becomes master and controls all forwarding.
An active/passive chassis cluster can be achieved by using redundant Ethernet interfaces (reths) that are all assigned to the same redundancy group. If any of the interfaces in an active group in a node fails, the group is declared inactive and all the interfaces in the group fail over to the other node.

This configuration minimizes the traffic over the fabric link because only one node in the cluster forwards traffic at any given time.

Related Documentation
- Example: Configuring an Active/Passive Chassis Cluster Pair (CLI) on page 288
- Example: Configuring an Active/Passive Chassis Cluster Pair (J-Web) on page 300

Example: Configuring an Active/Passive Chassis Cluster Pair (CLI)

Supported Platforms  SRX Series, vSRX

This example shows how to configure active/passive chassis clustering for SRX1500 device.

- Requirements on page 289
- Overview on page 289
- Configuration on page 291
- Verification on page 296
Requirements

Before you begin:

1. Physically connect a pair of devices together, ensuring that they are the same models.

2. Create a fabric link by connecting a Gigabit Ethernet interface on one device to another Gigabit Ethernet interface on the other device.

3. Create a control link by connecting the control port of the two SRX1500 devices.

4. Connect to one of the devices using the console port. (This is the node that forms the cluster.) and set the cluster ID and node number.
   
   ```
 user@host> set chassis cluster cluster-id 1 node 0 reboot
   ```

5. Connect to the other device using the console port and set the cluster ID and node number.
   
   ```
 user@host> set chassis cluster cluster-id 1 node 1 reboot
   ```

Overview

In this example, a single device in the cluster is used to route all traffic, and the other device is used only in the event of a failure. (See Figure 50 on page 289.) When a failure occurs, the backup device becomes master and controls all forwarding.

Figure 50: Active/Passive Chassis Cluster Topology

You can create an active/passive chassis cluster by configuring redundant Ethernet interfaces (reths) that are all assigned to the same redundancy group. This configuration minimizes the traffic over the fabric link because only one node in the cluster forwards traffic at any given time.
In this example, you configure group (applying the configuration with the `apply-groups` command) and chassis cluster information. Then you configure security zones and security policies. See Table 22 on page 290 through Table 25 on page 291.

### Table 22: Group and Chassis Cluster Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>node0</td>
<td>- Hostname: srx1500-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Interface: fxp0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 192.0.2.110/24</td>
</tr>
<tr>
<td></td>
<td>node1</td>
<td>- Hostname: srx1500-B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Interface: fxp0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 192.0.2.111/24</td>
</tr>
</tbody>
</table>

### Table 23: Chassis Cluster Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric links</td>
<td>fab0</td>
<td>Interface: ge-0/0/1</td>
</tr>
<tr>
<td></td>
<td>fab1</td>
<td>Interface: ge-7/0/1</td>
</tr>
<tr>
<td>Heartbeat interval</td>
<td>-</td>
<td>1000</td>
</tr>
<tr>
<td>Heartbeat threshold</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Redundancy group</td>
<td>0</td>
<td>- Priority:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Node 0: 254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Node 1: 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>- Priority:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Node 0: 254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Node 1: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interface monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ge-0/0/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ge-7/0/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ge-0/0/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ge-7/0/5</td>
</tr>
<tr>
<td>Number of redundant Ethernet interfaces</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 23: Chassis Cluster Configuration Parameters (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>interfaces</td>
<td>ge-0/0/4</td>
<td>Redundant parent: reth0</td>
</tr>
<tr>
<td></td>
<td>ge-7/0/4</td>
<td>Redundant parent: reth0</td>
</tr>
<tr>
<td></td>
<td>ge-0/0/5</td>
<td>Redundant parent: reth1</td>
</tr>
<tr>
<td></td>
<td>ge-7/0/5</td>
<td>Redundant parent: reth1</td>
</tr>
<tr>
<td>reth0</td>
<td></td>
<td>Redundancy group: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 198.51.100.1/24</td>
</tr>
<tr>
<td>reth1</td>
<td></td>
<td>Redundancy group: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 203.0.113.233/24</td>
</tr>
</tbody>
</table>

Table 24: Security Zone Configuration Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>trust</td>
<td>The reth1.0 interface is bound to this zone.</td>
</tr>
<tr>
<td>untrust</td>
<td>The reth0.0 interface is bound to this zone.</td>
</tr>
</tbody>
</table>

Table 25: Security Policy Configuration Parameters

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>This security policy permits traffic from the trust zone to the untrust zone.</td>
<td>ANY</td>
<td>• Match criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source-address any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• destination-address any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• application any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Action: permit</td>
</tr>
</tbody>
</table>

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[edit]
set groups node0 system host-name srx1500-A
set groups node0 interfaces fpx0 unit 0 family inet address 192.0.2.110/24
set groups node1 system host-name srx1500-B
```
To configure an active/passive chassis cluster:

1. Configure the management interface.

   [primary:node0][edit]
   user@host# set groups node0 system host-name srx1500-A
   user@host# set groups node0 interfaces fxp0 unit 0 family inet address 192.0.2.110/24
   user@host# set groups node0 system host-name srx1500-B
   user@host# set groups node1 interfaces fxp0 unit 0 family inet address 192.0.2.111/24
   user@host# set apply-groups "${node}"

2. Configure the fabric interface.

   [primary:node0][edit]
   user@host# set interfaces fab0 fabric-options member-interfaces ge-0/0/1
   user@host# set interfaces fab1 fabric-options member-interfaces ge-7/0/1

3. Configure heartbeat settings.

   [primary:node0][edit]
   user@host# set chassis cluster heartbeat-interval 1000
   user@host# set chassis cluster heartbeat-threshold 3

Step-by-Step Procedure
4. Configure redundancy groups.

    [primary:node0][edit]
    user@host# set chassis cluster redundancy-group 0 node 0 priority 100
    user@host# set chassis cluster redundancy-group 0 node 1 priority 1
    user@host# set chassis cluster redundancy-group 1 node 0 priority 100
    user@host# set chassis cluster redundancy-group 1 node 1 priority 1
    user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/4 weight 255
    user@host# set chassis cluster redundancy-group 1 interface-monitor ge-7/0/4 weight 255
    user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/5 weight 255
    user@host# set chassis cluster redundancy-group 1 interface-monitor ge-7/0/5 weight 255

5. Configure redundant Ethernet interfaces.

    [primary:node0][edit]
    user@host# set chassis cluster reth-count 2
    user@host# set interfaces ge-0/0/5 gigether-options redundant-parent reth1
    user@host# set interfaces ge-7/0/5 gigether-options redundant-parent reth1
    user@host# set interfaces ge-0/0/4 gigether-options redundant-parent reth0
    user@host# set interfaces ge-7/0/4 gigether-options redundant-parent reth0
    user@host# set interfaces reth0 redundant-ether-options redundancy-group 1
    user@host# set interfaces reth0 unit 0 family inet address 198.51.100.1/24
    user@host# set interfaces reth1 redundant-ether-options redundancy-group 1
    user@host# set interfaces reth1 unit 0 family inet address 203.0.113.233/24

6. Configure security zones.

    [primary:node0][edit]
    user@host# set security zones security-zone untrust interfaces reth1.0
    user@host# set security zones security-zone trust interfaces reth0.0

7. Configure security policies.

    [primary:node0][edit]
    user@host# set security policies from-zone trust to-zone untrust policy ANY match source-address any
    user@host# set security policies from-zone trust to-zone untrust policy ANY match destination-address any
    user@host# set security policies from-zone trust to-zone untrust policy ANY match application any
    user@host# set security policies from-zone trust to-zone untrust policy ANY then permit

Results: From configuration mode, confirm your configuration by entering the `show configuration` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
user@host> show configuration
version x.xx.x;
groups {
 node0 {
 system {
 host-name srx1500-A;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 192.0.2.110/24;
 }
 }
 }
 }
 }
 node1 {
 system {
 host-name srx1500-B;
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 192.0.2.110/24;
 }
 }
 }
 }
 }
 }
}
apply-groups "${node}";
chassis {
 cluster {
 reth-count 2;
 heartbeat-interval 1000;
 heartbeat-threshold 3;
 redundancy-group 0 {
 node 0 priority 100;
 node 1 priority 1;
 }
 redundancy-group 1 {
 node 0 priority 100;
 node 1 priority 1;
 interface-monitor {
 ge–0/0/4 weight 255;
 ge–7/0/4 weight 255;
 ge–0/0/5 weight 255;
 ge–7/0/5 weight 255;
 }
 }
 }
```
interfaces {
  ge-0/0/4 {
    gigether-options {
      redundant-parent reth0;
    }
  }
  ge-7/0/4 {
    gigether-options {
      redundant-parent reth0;
    }
  }
  ge-0/0/5 {
    gigether-options {
      redundant-parent reth1;
    }
  }
  ge-7/0/5 {
    gigether-options {
      redundant-parent reth1;
    }
  }
  fab0 {
    fabric-options {
      member-interfaces {
        ge-0/0/1;
      }
    }
  }
  fab1 {
    fabric-options {
      member-interfaces {
        ge-7/0/1;
      }
    }
  }
  reth0 {
    redundant-ether-options {
      redundancy-group 1;
    }
    unit 0 {
      family inet {
        address 198.51.100.1/24;
      }
    }
  }
  reth1 {
    redundant-ether-options {
      redundancy-group 1;
    }
    unit 0 {
      family inet {
        address 203.0.113.233/24;
      }
    }
  }
}
If you are done configuring the device, enter commit from configuration mode.

Verification

Confirm that the configuration is working properly.

- Verifying Chassis Cluster Status on page 296
- Verifying Chassis Cluster Interfaces on page 297
- Verifying Chassis Cluster Statistics on page 298
- Verifying Chassis Cluster Control Plane Statistics on page 298
- Verifying Chassis Cluster Data Plane Statistics on page 299
- Verifying Chassis Cluster Redundancy Group Status on page 299
- Troubleshooting with Logs on page 300

Verifying Chassis Cluster Status

Purpose

Verify the chassis cluster status, failover status, and redundancy group information.
**Action**  From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status
Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 0, Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
```

**Verifying Chassis Cluster Interfaces**

**Purpose**  Verify information about chassis cluster interfaces.

**Action**  From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}
user@host> show chassis cluster interfaces

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Up

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/1</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>fab0</td>
<td>ge-7/0/1</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-0/0/1</td>
<td>Up</td>
<td>Disabled</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-7/0/1</td>
<td>Up</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/4</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-7/0/4</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-0/0/5</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>ge-7/0/5</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>
Verifying Chassis Cluster Statistics

Purpose Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitored interfaces in the cluster.

Action From operational mode, enter the `show chassis cluster statistics` command.

```
{primary:node0}
user@host> show chassis cluster statistics
```

Control link statistics:
- Control link 0:
 - Heartbeat packets sent: 2276
 - Heartbeat packets received: 2280
 - Heartbeat packets errors: 0

Fabric link statistics:
- Child link 0
 - Probes sent: 2272
 - Probes received: 597

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster Control Plane Statistics

Purpose Verify information about chassis cluster control plane statistics (heartbeats sent and received) and the fabric link statistics (probes sent and received).

Action From operational mode, enter the `show chassis cluster control-plane statistics` command.

```
{primary:node0}
user@host> show chassis cluster control-plane statistics
```

Copyright © 2017, Juniper Networks, Inc.
Control link statistics:
Control link 0:
 Heartbeat packets sent: 258689
 Heartbeat packets received: 258684
 Heartbeat packets errors: 0
Fabric link statistics:
Child link 0
 Probes sent: 258681
 Probes received: 258681

Verifying Chassis Cluster Data Plane Statistics

Purpose Verify information about the number of RTOs sent and received for services.

Action From operational mode, enter the `show chassis cluster data-plane statistics` command.

{primary:node0}

```
user@host> show chassis cluster data-plane statistics
```

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPFTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster Redundancy Group Status

Purpose Verify the state and priority of both nodes in a cluster and information about whether the primary node has been preempted or whether there has been a manual failover.

Action From operational mode, enter the `chassis cluster status redundancy-group` command.

{primary:node0}

```
user@host> show chassis cluster status redundancy-group 1
```
<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Cluster ID: 1

Redundancy-Group: 1, Failover count: 1

Troubleshooting with Logs

Purpose
Use these logs to identify any chassis cluster issues. You must run these logs on both nodes.

Action
From operational mode, enter these `show` commands.

- `user@host> show log jsrpdp`
- `user@host> show log chassisid`
- `user@host> show log messages`
- `user@host> show log dcd`
- `user@host> show traceoptions`

Related Documentation
- Understanding Active/Passive Chassis Cluster Deployment on page 287
- Example: Configuring an Active/Passive Chassis Cluster Pair (J-Web) on page 300

Example: Configuring an Active/Passive Chassis Cluster Pair (J-Web)

Supported Platforms
SRX Series, vSRX

1. Enable clustering. See Step 1 in "Example: Configuring an Active/Passive Chassis Cluster Pair (CLI)" on page 288.

2. Configure the management interface. See Step 2 in "Example: Configuring an Active/Passive Chassis Cluster Pair (CLI)" on page 288.

4. Configure the redundancy groups.
 - Select **Configure>Chassis Cluster**.
 - Enter the following information, and then click **Apply**:
 - Redundant ether-Interface Count: **2**
 - Heartbeat Interval: **1000**
 - Heartbeat Threshold: **3**
 - Nodes: **0**
5. Configure the redundant Ethernet interfaces.
 - Select Configure > Chassis Cluster.
 - Select ge-0/0/4.
 - Enter reth1 in the Redundant Parent box.
 - Click Apply.
 - Select ge-7/0/4.
 - Enter reth1 in the Redundant Parent box.
 - Click Apply.
 - Select ge-0/0/5.
 - Enter reth0 in the Redundant Parent box.
 - Click Apply.
 - Select ge-7/0/5.
 - Enter reth0 in the Redundant Parent box.
 - Click Apply.
 - See Step 5 in “Example: Configuring an Active/Passive Chassis Cluster Pair (CLI)” on page 288 for the last four configuration settings.

6. Configure the security zones. See Step 6 in “Example: Configuring an Active/Passive Chassis Cluster Pair (CLI)” on page 288.

7. Configure the security policies. See Step 7 in “Example: Configuring an Active/Passive Chassis Cluster Pair (CLI)” on page 288.

8. Click OK to check your configuration and save it as a candidate configuration, then click Commit Options > Commit.
Example: Configuring an Active/Passive Chassis Cluster on SRX Series Services Gateways

Supported Platforms
SRX4100, SRX4200, SRX5400, SRX5600, SRX5800

This example shows how to set up basic active/passive chassis clustering on an SRX Series device (SRX5800 device).

Requirements

Before you begin:

- You need two SRX5800 Services Gateways with identical hardware configurations, one MX240 edge router, and one EX8208 Ethernet Switch.
- Physically connect the two devices (back-to-back for the fabric and control ports) and ensure that they are the same models.
- Before the cluster is formed, you must configure control ports for each device, as well as assign a cluster ID and node ID to each device, and then reboot. When the system boots, both the nodes come up as a cluster.

NOTE: Control port configuration is required for SRX5400, SRX5600, and SRX5800 devices.

- To ensure secure login, configure the internal IPsec SA. When the internal IPsec is configured, IPsec-based rlogin and remote command (rcmd) are enforced, so an attacker cannot gain privileged access or observe traffic containing administrator commands and outputs. You do not need to configure the internal IPsec on both the nodes. When you commit the configuration, both nodes are synchronized. Only 3des-cbc encryption algorithm is supported. You must ensure that the manual encryption key is ascii text and 24 characters long; otherwise, the configuration will result in a commit failure.

You have the option to enable the iked-encryption. The device must be rebooted after this option is configured.

- Enable the iked-encryption:

 user@host# set security ipsec internal security-association manual encryption ike-ha-link-encryption enable
• Enable the 3des-cbc encryption algorithm:

 `user@host# set security ipsec internal security-association manual encryption algorithm 3des-cbc`

• Configure the encryption key:

 `user@host# set security ipsec internal security-association manual encryption key ascii-text SABC1234EFGH5678IJKL9101`

 NOTE: The password must be of 24 characters long.

• Activate internal IPsec:

 `user@host> request security internal-security-association refresh`

• Use the `show chassis cluster interfaces` CLI command to verify that internal SA is enabled:

 `user@host> show chassis cluster interfaces`

 Control link status: Up

 Control interfaces:

 Index Interface Status Internal SA
 0 em0 Up enabled
 1 em1 Down enabled

• Configure the control port for each device, and commit the configuration.

 Select FPC 1/13, because the central point is always on the lowest SPC/SPU in the cluster (for this example, it is slot 0). For maximum reliability, place the control ports on a separate SPC from the central point (for this example, use the SPC in slot 1). You must enter the operational mode commands on both devices. For example:

 • On node 0:

 `user@host# set chassis cluster control-ports fpc 1 port 0`
 `user@host# set chassis cluster control-ports fpc 13 port 0`
 `user@host# commit`

 • On node 1:

 `user@host# set chassis cluster control-ports fpc 1 port 0`
 `user@host# set chassis cluster control-ports fpc 13 port 0`
 `user@host# commit`

• Set the two devices to cluster mode. A reboot is required to enter into cluster mode after the cluster ID and node ID are set. You can cause the system to boot automatically by including the `reboot` parameter in the CLI command line. You must enter the operational mode commands on both devices. For example:

 • On node 0:

 `user@host> set chassis cluster cluster-id 1 node 0 reboot`

 • On node 1:

 `user@host> set chassis cluster cluster-id 1 node 1 reboot`
The cluster ID is the same on both devices, but the node ID must be different because one device is node 0 and the other device is node 1. The range for the cluster ID is 1 through 255. Setting a cluster ID to 0 is equivalent to disabling a cluster. Cluster ID greater than 15 can only be set when the fabric and control link interfaces are connected back-to-back.

Now the devices are a pair. From this point forward, configuration of the cluster is synchronized between the node members, and the two separate devices function as one device.

Overview

This example shows how to set up basic active/passive chassis clustering on an SRX Series device. The basic active/passive example is the most common type of chassis cluster.

The basic active/passive chassis cluster consists of two devices:

- One device actively provides routing, firewall, NAT, VPN, and security services, along with maintaining control of the chassis cluster.
- The other device passively maintains its state for cluster failover capabilities in case the active device becomes inactive.

NOTE: This active/passive mode example for the SRX5800 Services Gateway does not describe in detail miscellaneous configurations such as how to configure NAT, security policies, or VPNs. They are essentially the same as they would be for standalone configurations. See Introduction to NAT, Security Policies Overview, and IPSec VPN Overview. However, if you are performing proxy ARP in chassis cluster configurations, you must apply the proxy ARP configurations to the reth interfaces rather than the member interfaces because the RETH interfaces hold the logical configurations. See Configuring Proxy ARP (CLI Procedure). You can also configure separate logical interface configurations using VLANs and trunked interfaces in the SRX5800 Services Gateway. These configurations are similar to the standalone implementations using VLANs and trunked interfaces.

Figure 51 on page 305 shows the topology used in this example.
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

On [primary:node0]

```
[edit]
sedit interfaces fab0 fabric-options member-interfaces ge-11/3/0
set interfaces fab1 fabric-options member-interfaces ge-23/3/0
set groups node0 system host-name SRX5800-1
set groups node0 interfaces fxp0 unit 0 family inet address 10.3.5.1/24
set groups node0 system backup-router 10.3.5.254 destination 10.0.0.0/16
set groups node1 system host-name SRX5800-2
set groups node1 interfaces fxp0 unit 0 family inet address 10.3.5.2/24
set groups node1 system backup-router 10.3.5.254 destination 10.0.0.0/16
```
set apply-groups "${node}"
set chassis cluster reth-count 2
set chassis cluster redundancy-group 0 node 0 priority 129
set chassis cluster redundancy-group 0 node 1 priority 128
set chassis cluster redundancy-group 1 node 0 priority 129
set chassis cluster redundancy-group 1 node 1 priority 128
set interfaces xe-6/0/0 gigether-options redundant-parent reth0
set interfaces xe-6/1/0 gigether-options redundant-parent reth1
set interfaces xe-18/0/0 gigether-options redundant-parent reth0
set interfaces xe-18/1/0 gigether-options redundant-parent reth1
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth0 unit 0 family inet address 1.1.1.1/24
set interfaces reth1 redundant-ether-options redundancy-group 1
set interfaces reth1 unit 0 family inet address 2.2.2.1/24
set chassis cluster redundancy-group 1 interface-monitor xe-6/0/0 weight 255
set chassis cluster redundancy-group 1 interface-monitor xe-6/1/0 weight 255
set chassis cluster redundancy-group 1 interface-monitor xe-18/0/0 weight 255
set chassis cluster redundancy-group 1 interface-monitor xe-18/1/0 weight 255
set chassis cluster control-link-recovery
set security zones security-zone untrust interfaces reth0.0
set security zones security-zone trust interfaces reth1.0
set routing-options static route 0.0.0.0/0 next-hop 1.1.1.254
set routing-options static route 2.0.0.0/8 next-hop 2.2.2.254

To quickly configure an EX8208 Core Switch, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

On {primary:node0}

[edit]
set interfaces xe-1/0/0 unit 0 family ethernet-switching port-mode access vlan members SRX5800
set interfaces xe-2/0/0 unit 0 family ethernet-switching port-mode access vlan members SRX5800
set interfaces vlan unit 50 family inet address 2.2.2.254/24
set vians SRX5800 vlan-id 50
set vians SRX5800 l3-interface vlan.50
set routing-options static route 0.0.0.0/0 next-hop 2.2.2.1/24

To quickly configure an MX240 edge router, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

On {primary:node0}

[edit]
set interfaces xe-1/0/0 encapsulation ethernet-bridge unit 0 family ethernet-switching
set interfaces xe-2/0/0 encapsulation ethernet-bridge unit 0 family ethernet-switching
set interfaces irb unit 0 family inet address 1.1.1.254/24
set routing-options static route 2.0.0.0/8 next-hop 1.1.1.1
set routing-options static route 0.0.0.0/0 next-hop (upstream router)
set vians SRX5800 vlan-id X (could be set to "none")
set vians SRX5800 domain-type bridge routing-interface irb.0
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure a chassis cluster on an SRX Series device:

1. Configure the fabric (data) ports of the cluster that are used to pass RTOs in active/passive mode. For this example, use one of the 1-Gigabit Ethernet ports because running out of bandwidth using active/passive mode is not an issue. Define two fabric interfaces, one on each chassis, to connect together.

   ```
   {primary:node0}[edit]
   user@host# set interfaces fab0 fabric-options member-interfaces ge-1/1/3/0
   user@host# set interfaces fab1 fabric-options member-interfaces ge-2/3/3/0
   ```

2. Because the SRX5800 Services Gateway chassis cluster configuration is contained within a single common configuration, to assign some elements of the configuration to a specific member only, you must use the Junos OS node–specific configuration method called groups. The `set apply-groups ${node}` command uses the node variable to define how the groups are applied to the nodes; each node recognizes its number and accepts the configuration accordingly. You must also configure out-of-band management on the fxp0 interface of the SRX5800 Services Gateway using separate IP addresses for the individual control planes of the cluster.

   ```
   NOTE: Configuring the backup router destination address as x.x.x.0/0 is not allowed.
   ```

   ```
   {primary:node0}[edit]
   user@host# set apply-groups node0
   user@host# set apply-groups node1
   user@host# set apply-groups node2
   ```
3. Configure redundancy groups for chassis clustering. Each node has interfaces in a redundancy group where interfaces are active in active redundancy groups (multiple active interfaces can exist in one redundancy group). Redundancy group 0 controls the control plane and redundancy group 1+ controls the data plane and includes the data plane ports. For this active/passive mode example, only one chassis cluster member is active at a time so you need to define redundancy groups 0 and 1 only. Besides redundancy groups, you must also define:

- Redundant Ethernet groups—Configure how many redundant Ethernet interfaces (member links) will be active on the device so that the system can allocate the appropriate resources for it.
- Priority for control plane and data plane—Define which device has priority (for chassis cluster, high priority is preferred) for the control plane, and which device is preferred to be active for the data plane.

NOTE:
- In active/passive or active/active mode, the control plane (redundancy group 0) can be active on a chassis different from the data plane (redundancy group 1+ and groups) chassis. However, for this example we recommend having both the control and data plane active on the same chassis member. When traffic passes through the fabric link to go to another member node, latency is introduced (z line mode traffic).
- On SRX Series devices (SRX5000 line), the IPsec VPN is not supported in active/active chassis cluster configuration (that is, when there are multiple RG1+ redundancy groups).

```plaintext
[primary:node0][edit]
user@host# set chassis cluster reth-count 2
user@host# set chassis cluster redundancy-group 0 node 0 priority 129
user@host# set chassis cluster redundancy-group 0 node 1 priority 128
user@host# set chassis cluster redundancy-group 1 node 0 priority 129
user@host# set chassis cluster redundancy-group 1 node 1 priority 128
```

4. Configure the data interfaces on the platform so that in the event of a data plane failover, the other chassis cluster member can take over the connection seamlessly. Seamless transition to a new active node will occur with data plane failover. In case of control plane failover, all the daemons are restarted on the new node thus enabling a graceful restart to avoid losing neighborship with peers (ospf, bgp). This promotes a seamless transition to the new node without any packet loss.

You must define the following items:
- Define the membership information of the member interfaces to the reth interface.
- Define which redundancy group the reth interface is a member of. For this active/passive example, it is always 1.
- Define reth interface information such as the IP address of the interface.
[primary:node0][edit]
user@host# set interfaces xe-6/0/0 gigether-options redundant-parent reth0
user@host# set interfaces xe-6/1/0 gigether-options redundant-parent reth1
user@host# set interfaces xe-18/0/0 gigether-options redundant-parent reth0
user@host# set interfaces xe-18/1/0 gigether-options redundant-parent reth1
user@host# set interfaces reth0 redundant-ether-options redundancy-group 1
user@host# set interfaces reth0 unit 0 family inet address 1.1.1.1/24
user@host# set interfaces reth1 redundant-ether-options redundancy-group 1
user@host# set interfaces reth1 unit 0 family inet address 2.2.2.1/24

5. Configure the chassis cluster behavior in case of a failure. For the SRX5800 Services Gateway, the failover threshold is set at 255. You can alter the weights to determine the impact on the chassis failover. You must also configure control link recovery. The recovery automatically causes the secondary node to reboot should the control link fail, and then come back online. Enter these commands on node 0.

[primary:node0][edit]
user@host# set chassis cluster redundancy-group 1 interface-monitor xe-6/0/0 weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor xe-6/1/0 weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor xe-18/0/0 weight 255
user@host# set chassis cluster redundancy-group 1 interface-monitor xe-18/1/0 weight 255
user@host# set chassis cluster control-link-recovery

This step completes the chassis cluster configuration part of the active/passive mode example for the SRX5800 Services Gateway. The rest of this procedure describes how to configure the zone, virtual router, routing, EX8208 Core Switch, and MX240 Edge Router to complete the deployment scenario.

6. Configure and connect the reth interfaces to the appropriate zones and virtual routers. For this example, leave the reth0 and reth1 interfaces in the default virtual router inet.0, which does not require any additional configuration.

[primary:node0][edit]
user@host# set security zones security-zone untrust interfaces reth0.0
user@host# set security zones security-zone trust interfaces reth1.0

7. For this active/passive mode example, because of the simple network architecture, use static routes to define how to route to the other network devices.

[primary:node0][edit]
user@host# set routing-options static route 0.0.0.0/0 next-hop 1.1.1.254
user@host# set routing-options static route 2.0.0.0/8 next-hop 2.2.2.254

8. For the EX8208 Ethernet Switch, the following commands provide only an outline of the applicable configuration as it pertains to this active/passive mode example for the SRX5800 Services Gateway; most notably the VLANs, routing, and interface configuration.

[primary:node0][edit]
user@host# set interfaces xe-1/0/0 unit 0 family ethernet-switching port-mode access vlan members SRX5800
user@host# set interfaces xe-2/0/0 unit 0 family ethernet-switching port-mode access vlan members SRX5800
user@host# set interfaces vlan unit 50 family inet address 2.2.2.254/24
user@host# set vlans SRX5800 vlan-id 50
user@host# set vlans SRX5800 l3-interface vlan.50
user@host# set routing-options static route 0.0.0.0/0 next-hop 2.2.2.1/24

9. For the MX240 edge router, the following commands provide only an outline of the applicable configuration as it pertains to this active/passive mode example for the SRX5800 Services Gateway; most notably you must use an IRB interface within a virtual switch instance on the switch.

[primary:node0][edit]
user@host# set interfaces xe-1/0/0 encapsulation ethernet-bridge unit 0 family ethernet-switching
user@host# set interfaces xe-2/0/0 encapsulation ethernet-bridge unit 0 family ethernet-switching
user@host# set interfaces irb unit 0 family inet address 1.1.1.254/24
user@host# set routing-options static route 2.0.0.0/8 next-hop 1.1.1.1
user@host# set routing-options static route 0.0.0.0/0 next-hop (upstream router)
user@host# set vlans SRX5800 vlan-id X (could be set to “none”)
user@host# set vlans SRX5800 domain-type bridge routing-interface irb.0
user@host# set vlans SRX5800 domain-type bridge interface xe-1/0/0
user@host# set vlans SRX5800 domain-type bridge interface xe-2/0/0

Results From operational mode, confirm your configuration by entering the show configuration command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

> show configuration
version x.xx.x;
groups {
 node0 {
 system {
 host-name SRX58001;
 backup-router 10.3.5.254 destination 0.0.0.0/16;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 10.3.5.1/24;
 }
 }
 }
 }
 }
 node1 {
 system {
 host-name SRX58002;
 backup-router 10.3.5.254 destination 0.0.0.0/16;
 }
 }
}
interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 10.3.5.2/24;
 }
 }
 }
}
apply-groups "${node}"

system {
 root-authentication {
 encrypted-password "$ABC1234EFGH5678IJKL9101"
 }
 name-server {
 4.2.2.2;
 }
 services {
 ssh {
 root-login allow;
 }
 netconf {
 ssh;
 }
 web-management {
 http {
 interface fxp0.0;
 }
 }
 }
}

chassis {
 cluster {
 control-link-recovery;
 reth-count 2;
 control-ports {
 fpc 1 port 0;
 fpc 13 port 0;
 }
 redundancy-group 0 {
 node 0 priority 129;
 node 1 priority 128;
 }
 redundancy-group 1 {
 node 0 priority 129;
 node 1 priority 128;
 interface-monitor {
 xe-6/0/0 weight 255;
 xe-6/1/0 weight 255;
 xe-18/0/0 weight 255;
 xe-18/1/0 weight 255;
 }
 }
 }
}

interfaces {
 xe-6/0/0 {
 gigether-options {

redundant-parent reth0;
}
}
xe-6/1/0 {

gigether-options {
 redundant-parent reth1;
}
}
xe-18/0/0 {
 gigether-options {
 redundant-parent reth0;
 }
}
xe-18/1/0 {
 gigether-options {
 redundant-parent reth1;
 }
}
}
fab0 {
 fabric-options {
 member-interfaces {
 ge-11/3/0;
 }
 }
}
}
fab1 {
 fabric-options {
 member-interfaces {
 ge-23/3/0;
 }
 }
}
}
reth0 {
 redundant-ether-options {
 redundancy-group 1;
 }
 unit 0 {
 family inet {
 address 1.1.1.1/24;
 }
 }
}
reth1 {
 redundant-ether-options {
 redundancy-group 1;
 }
 unit 0 {
 family inet {
 address 2.2.2.1/24;
 }
 }
}
}
}
routing-options {
 static {
 route 0.0.0.0/0 {
 next-hop 1.1.1.254;
 }
 route 2.0.0.0/8 {
 next-hop 2.2.2.254;
 }
 }
}
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

- Verifying Chassis Cluster Status on page 314
- Verifying Chassis Cluster Interfaces on page 314
- Verifying Chassis Cluster Statistics on page 314
- Verifying Chassis Cluster Control Plane Statistics on page 315
- Verifying Chassis Cluster Data Plane Statistics on page 316
- Verifying Chassis Cluster Redundancy Group Status on page 316
- Troubleshooting with Logs on page 317
Verifying Chassis Cluster Status

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
show chassis cluster status
Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>129</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>128</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 0, Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>129</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>128</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
```

Verifying Chassis Cluster Interfaces

Purpose
Verify information about chassis cluster interfaces.

Action
From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}
user@host> show chassis cluster interfaces
Control link name: fxp1

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>xe-6/0/0</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>xe-6/1/0</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>xe-18/0/0</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>xe-18/1/0</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Verifying Chassis Cluster Statistics

Purpose
Verify information about chassis cluster services and control link statistics (heartbeats sent and received), fabric link statistics (probes sent and received), and the number of RTOs sent and received for services.

Action
From operational mode, enter the `show chassis cluster statistics` command.

```
{primary:node0}
```
Verifying Chassis Cluster Control Plane Statistics

Purpose Verify information about chassis cluster control plane statistics (heartbeats sent and received) and the fabric link statistics (probes sent and received).

Action From operational mode, enter the `show chassis cluster control-plane statistics` command.

{primary:node0}

```bash
user@host> show chassis cluster control-plane statistics

Control link statistics:
  Control link 0:
    Heartbeat packets sent: 258689
    Heartbeat packets received: 258684
    Heartbeat packets errors: 0

Fabric link statistics:
  Child link 0
    Probes sent: 258681
    Probes received: 258681
```

```
Services Synchronized:
<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Verifying Chassis Cluster Data Plane Statistics

Purpose Verify information about the number of RTOs sent and received for services.

Action From operational mode, enter the `show chassis cluster data-plane statistics` command.

```
{primary:node0}
user@host> show chassis cluster data-plane statistics
```

```
Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Verifying Chassis Cluster Redundancy Group Status

Purpose Verify the state and priority of both nodes in a cluster and information about whether the primary node has been preempted or whether there has been a manual failover.

Action From operational mode, enter the `chassis cluster status redundancy-group` command.

```
{primary:node0}
user@host> show chassis cluster status redundancy-group
```

```
Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>50</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
```

```
Redundancy-Group: 1, Failover count: 1
```
Troubleshooting with Logs

Purpose
Use these logs to identify any chassis cluster issues. You must run these logs on both nodes.

Action
From operational mode, enter these `show log` commands.

```
user@host> show log jsrp
user@host> show log chassisd
user@host> show log messages
user@host> show log dcd
user@host> show traceoptions
```

Related Documentation
- Preparing Your Equipment for Chassis Cluster Formation on page 61
- Connecting SRX Series Devices to Create a Chassis Cluster on page 71
- Understanding Active/Passive Chassis Cluster Deployment on page 287
- Example: Configuring an Active/Passive Chassis Cluster Pair (CLI) on page 288
- Example: Configuring an Active/Passive Chassis Cluster Pair (J-Web) on page 300

Understanding Active/Passive Chassis Cluster Deployment with an IPsec Tunnel

Supported Platforms
SRX Series, vSRX

In this case, a single device in the cluster terminates in an IPsec tunnel and is used to process all traffic while the other device is used only in the event of a failure (see Figure 52 on page 318). When a failure occurs, the backup device becomes master and controls all forwarding.
An active/passive chassis cluster can be achieved by using redundant Ethernet interfaces (reths) that are all assigned to the same redundancy group. If any of the interfaces in an active group in a node fails, the group is declared inactive and all the interfaces in the group fail over to the other node.

This configuration provides a way for a site-to-site IPsec tunnel to terminate in an active/passive cluster where a redundant Ethernet interface is used as the tunnel endpoint. In the event of a failure, the redundant Ethernet interface in the backup SRX Series device becomes active, forcing the tunnel to change endpoints to terminate in the new active SRX Series device. Because tunnel keys and session information are synchronized between the members of the chassis cluster, a failover does not require the tunnel to be renegotiated and all established sessions are maintained.

NOTE: Dynamic tunnels cannot load-balance across different SPCs.

Related Documentation
- Understanding Active/Passive Chassis Cluster Deployment on page 287
- Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel on page 318
- Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel (J-Web) on page 334

Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel

Supported Platforms
SRX Series, vSRX
This example shows how to configure active/passive chassis clustering with an IPsec tunnel for SRX Series devices.

- Requirements on page 319
- Overview on page 319
- Configuration on page 323
- Verification on page 330

Requirements

Before you begin:

- Get two SRX5000 models with identical hardware configurations, one SRX1500 device, and four EX Series Ethernet switches.
- Physically connect the two devices (back-to-back for the fabric and control ports) and ensure that they are the same models. You can configure both the fabric and control ports on the SRX5000 line.
- Set the two devices to cluster mode and reboot the devices. You must enter the following operational mode commands on both devices, for example:

 On node 0:

 `user@host> set chassis cluster cluster-id 1 node 0 reboot`

 On node 1:

 `user@host> set chassis cluster cluster-id 1 node 1 reboot`

 The cluster ID is the same on both devices, but the node ID must be different because one device is node 0 and the other device is node 1. The range for the cluster ID is 1 through 255. Setting a cluster ID to 0 is equivalent to disabling a cluster.

 Cluster ID greater than 15 can only be set when the fabric and control link interfaces are connected back-to-back.

- Get two SRX5000 models with identical hardware configurations, one SRX1500 edge router, and four EX Series Ethernet switches.
- Physically connect the two devices (back-to-back for the fabric and control ports) and ensure that they are the same models. You can configure both the fabric and control ports on the SRX5000 line.

From this point forward, configuration of the cluster is synchronized between the node members and the two separate devices function as one device. Member-specific configurations (such as the IP address of the management port of each member) are entered using configuration groups.

Overview

In this example, a single device in the cluster terminates in an IPsec tunnel and is used to process all traffic, and the other device is used only in the event of a failure. (See Figure 53 on page 320.) When a failure occurs, the backup device becomes master and controls all forwarding.
In this example, you configure group (applying the configuration with the `apply-groups` command) and chassis cluster information. Then you configure IKE, IPsec, static route, security zone, and security policy parameters. See Table 26 on page 320 through Table 32 on page 323.

Table 26: Group and Chassis Cluster Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>node0</td>
<td>• Hostname: SRX5800-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interface: fxp0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 172.19.100.50/24</td>
</tr>
</tbody>
</table>

node1		• Hostname: SRX5800-2
		• Interface: fxp0
		• Unit 0
		• 172.19.100.51/24

Table 27: Chassis Cluster Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric links</td>
<td>fab0</td>
<td>Interface: xe-5/3/0</td>
</tr>
<tr>
<td></td>
<td>fab1</td>
<td>Interface: xe-17/3/0</td>
</tr>
</tbody>
</table>

| Number of redundant Ethernet interfaces | – | 2 |
Table 27: Chassis Cluster Configuration Parameters (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heartbeat interval</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Heartbeat threshold</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Redundancy group</td>
<td>0</td>
<td>Priority:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Node 0: 254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Node 1: 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Priority:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Node 0: 254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Node 1: 1</td>
</tr>
<tr>
<td>Interface monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe-5/0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe-5/1/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe-5/0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe-17/0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe-17/1/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xe-5/1/0</td>
<td>Redundant parent: reth1</td>
<td></td>
</tr>
<tr>
<td>xe-5/0/0</td>
<td>Redundant parent: reth1</td>
<td></td>
</tr>
<tr>
<td>xe-17/0/0</td>
<td>Redundant parent: reth0</td>
<td></td>
</tr>
<tr>
<td>xe-17/1/0</td>
<td>Redundant parent: reth0</td>
<td></td>
</tr>
<tr>
<td>reth0</td>
<td>Redundancy group: 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 10.1.1.60/16</td>
</tr>
<tr>
<td>reth1</td>
<td>Redundancy group: 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Multipoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 10.10.1.1/30</td>
</tr>
<tr>
<td>st0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 10.10.1.1/30</td>
</tr>
</tbody>
</table>
Table 28: IKE Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>proposal-set</td>
<td></td>
</tr>
<tr>
<td></td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Policy</td>
<td>preShared</td>
<td>• Mode: main</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Proposal reference: proposal-set standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IKE Phase 1 policy authentication method: pre-shared-key ascii-text</td>
</tr>
<tr>
<td>Gateway</td>
<td>SRX1500-1</td>
<td>• IKE policy reference: perShared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• External interface: reth0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gateway address: 10.1.1.90</td>
</tr>
</tbody>
</table>

NOTE: On SRX5000 line devices, only reth interfaces are supported for IKE external interface configuration in IPsec VPN. Other interface types can be configured, but IPsec VPN might not work.

On some SRX Series devices, reth interfaces and the lo0 interface are supported for IKE external interface configuration in IPsec VPN. Other interface types can be configured, but IPsec VPN might not work.

On all SRX5000 line devices, the lo0 logical interface cannot be configured with RG0 if used as an IKE gateway external interface.

Table 29: IPsec Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>proposal-set</td>
<td></td>
</tr>
<tr>
<td></td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Policy</td>
<td>std</td>
<td></td>
</tr>
<tr>
<td>VPN</td>
<td>SRX1500-1</td>
<td>• IKE gateway reference: SRX1500-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IPsec policy reference: std</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bind to interface: st0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VPN monitoring: vpn-monitor optimized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tunnels established: establish-tunnels immediately</td>
</tr>
</tbody>
</table>

NOTE: The manual VPN name and the site-to-site gateway name cannot be the same.

Table 30: Static Route Configuration Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/0</td>
<td>Next hop: 10.2.1.1</td>
</tr>
<tr>
<td>10.3.0.0/16</td>
<td>Next hop: 10.10.1.2</td>
</tr>
</tbody>
</table>
Table 31: Security Zone Configuration Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
</table>
| trust | • All system services are allowed.
 • All protocols are allowed.
 • The reth0.0 interface is bound to this zone. |
| untrust | • All system services are allowed.
 • All protocols are allowed.
 • The reth1.0 interface is bound to this zone. |
| vpn | • All system services are allowed.
 • All protocols are allowed.
 • The st0.0 interface is bound to this zone. |

Table 32: Security Policy Configuration Parameters

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
</table>
| This security policy permits traffic from the trust zone to the untrust zone. | ANY | • Match criteria:
 • source-address any
 • destination-address any
 • application any
 • Action: permit |
| This security policy permits traffic from the trust zone to the vpn zone. | vpn-any | • Match criteria:
 • source-address any
 • destination-address any
 • application any
 • Action: permit |

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[primary:node0][edit]
set chassis cluster control-ports fpc 2 port 0
set chassis cluster control-ports fpc 14 port 0
set groups node0 system host-name SRX5800-1
set groups node0 interfaces fxp0 unit 0 family inet address 172.19.100.50/24
set groups node1 system host-name SRX5800-2
set groups node1 interfaces fxp0 unit 0 family inet address 172.19.100.51/24
set apply-groups "${node}" 
set interfaces fab0 fabric-options member-interfaces xe-5/3/0
set interfaces fab1 fabric-options member-interfaces xe-17/3/0
set chassis cluster reth-count 2
set chassis cluster heartbeat-interval 1000
```
set chassis cluster heartbeat-threshold 3
set chassis cluster node 0
set chassis cluster node 1
set chassis cluster redundancy-group 0 node 0 priority 254
set chassis cluster redundancy-group 0 node 1 priority 1
set chassis cluster redundancy-group 1 node 0 priority 254
set chassis cluster redundancy-group 1 node 1 priority 1
set chassis cluster redundancy-group 1 preempt
set chassis cluster redundancy-group 1 interface-monitor xe-5/0/0 weight 255
set chassis cluster redundancy-group 1 interface-monitor xe-5/1/0 weight 255
set chassis cluster redundancy-group 1 interface-monitor xe-17/0/0 weight 255
set chassis cluster redundancy-group 1 interface-monitor xe-17/1/0 weight 255
set interfaces xe-5/1/0 gigether-options redundant-parent reth1
set interfaces xe-17/1/0 gigether-options redundant-parent reth1
set interfaces xe-5/0/0 gigether-options redundant-parent reth0
set interfaces xe-17/0/0 gigether-options redundant-parent reth0
set interfaces reth0 redundant-ether-options redundancy-group 1
set interfaces reth1 redundant-ether-options redundancy-group 1
set interfaces reth0 unit 0 family inet address 10.1.1.60/16
set interfaces reth1 unit 0 family inet address 10.2.1.60/16
set interfaces st0 unit 0 multipoint family inet address 10.10.1.1/30
set security ike policy preShared mode main
set security ike policy preShared proposal-set standard
set security ike policy preShared-key asclii-text "$ABC123"## Encrypted password
set security ike gateway SRX1500-1 ike-policy preShared
set security ike gateway SRX1500-1 address 10.1.1.90
set security ipsec policy std proposal-set standard
set security ipsec vpn SRX1500-1 bind-interface st0.0
set security ipsec vpn SRX1500-1 vpn-monitor optimized
set security ipsec vpn SRX1500-1 ike gateway SRX1500-1
set security ipsec vpn SRX1500-1 ike ipsec-policy std
set security ipsec vpn SRX1500-1 establish-tunnels immediately
set routing-options static route 0.0.0.0/0 next-hop 10.2.1.1
set routing-options static route 10.3.0.0/16 next-hop 10.10.1.2
set security zones security-zone untrust host-inbound-traffic system-services all
set security zones security-zone untrust host-inbound-traffic protocols all
set security zones security-zone untrust interfaces reth1.0
set security zones security-zone trust host-inbound-traffic system-services all
set security zones security-zone trust host-inbound-traffic protocols all
set security zones security-zone trust interfaces reth0.0
set security zones security-zone vpn host-inbound-traffic system-services all 144
set security zones security-zone vpn host-inbound-traffic protocols all
set security zones security-zone vpn interfaces st0.0
set security policies from-zone trust to-zone untrust policy ANY match source-address any
set security policies from-zone trust to-zone untrust policy ANY match destination-address any
set security policies from-zone trust to-zone untrust policy ANY match application any
set security policies from-zone trust to-zone vpn policy vpn-any then permit

Step-by-Step Procedure

To configure an active/passive chassis cluster pair with an IPsec tunnel:

1. Configure control ports.
2. Configure the management interface.

 {primary:node0}[edit]
 user@host# set groups node0 system host-name SRX5800-1
 user@host# set groups node0 interfaces fxp0 unit 0 family inet address 172.19.100.50/24
 user@host# set groups node1 system host-name SRX5800-2
 user@host# set groups node1 interfaces fxp0 unit 0 family inet address 172.19.100.51/24
 user@host# set apply-groups "$[node]"

3. Configure the fabric interface.

 {primary:node0}[edit]
 user@host# set interfaces fab0 fabric-options member-interfaces xe-5/3/0
 user@host# set interfaces fab1 fabric-options member-interfaces xe-17/3/0

4. Configure redundancy groups.

 {primary:node0}[edit]
 user@host# set chassis cluster reth-count 2
 user@host# set chassis cluster heartbeat-interval 1000
 user@host# set chassis cluster heartbeat-threshold 3
 user@host# set chassis cluster node 0
 user@host# set chassis cluster node 1
 user@host# set chassis cluster redundancy-group 0 node 0 priority 254
 user@host# set chassis cluster redundancy-group 0 node 1 priority 1
 user@host# set chassis cluster redundancy-group 1 node 0 priority 254
 user@host# set chassis cluster redundancy-group 1 node 1 priority 1
 user@host# set chassis cluster redundancy-group 1 preempt
 user@host# set chassis cluster redundancy-group 1 interface-monitor xe-5/0/0 weight 255
 user@host# set chassis cluster redundancy-group 1 interface-monitor xe-5/1/0 weight 255
 user@host# set chassis cluster redundancy-group 1 interface-monitor xe-17/0/0 weight 255
 user@host# set chassis cluster redundancy-group 1 interface-monitor xe-17/1/0 weight 255

5. Configure redundant Ethernet interfaces.

 {primary:node0}[edit]
 user@host# set interfaces xe-5/1/0 gigether-options redundant-parent reth1
 user@host# set interfaces xe-17/1/0 gigether-options redundant-parent reth1
 user@host# set interfaces xe-5/0/0 gigether-options redundant-parent reth0
 user@host# set interfaces xe-17/0/0 gigether-options redundant-parent reth0
 user@host# set interfaces reth0 redundant-ether-options redundancy-group 1
 user@host# set interfaces reth0 unit 0 family inet address 10.1.1.60/16
 user@host# set interfaces reth1 redundant-ether-options redundancy-group 1
 user@host# set interfaces reth1 unit 0 family inet address 10.2.1.60/16
6. Configure IPsec parameters.

 [primary:node0][edit]
 user@host# set interfaces st0 unit 0 multipoint family inet address 10.10.1.1/30
 user@host# set security ike policy preShared mode main
 user@host# set security ike policy preShared proposal-set standard
 user@host# set security ike policy preShared pre-shared-key ascii-text "$ABC123"
 Encrypted password
 user@host# set security ike gateway SRX1500-1 like-policy preShared
 user@host# set security ike gateway SRX1500-1 address 10.1.1.90
 user@host# set security ike gateway SRX1500-1 external-interface reth0.0
 user@host# set security ipsec policy std proposal-set standard
 user@host# set security ipsec vpn SRX1500-1 bind-interface st0.0
 user@host# set security ipsec vpn SRX1500-1 vpn-monitor optimized
 user@host# set security ipsec vpn SRX1500-1 like gateway SRX1500-1
 user@host# set security ipsec vpn SRX1500-1 like ipsec-policy std
 user@host# set security ipsec vpn SRX1500-1 establish-tunnels immediately

7. Configure static routes.

 [primary:node0][edit]
 user@host# set routing-options static route 0.0.0.0/0 next-hop 10.2.1.1
 user@host# set routing-options static route 10.3.0.0/16 next-hop 10.10.1.2

8. Configure security zones.

 [primary:node0][edit]
 user@host# set security zones security-zone untrust host-inbound-traffic
 system-services all
 user@host# set security zones security-zone untrust host-inbound-traffic protocols
 all
 user@host# set security zones security-zone untrust interfaces reth1.0
 user@host# set security zones security-zone trust host-inbound-traffic
 system-services all
 user@host# set security zones security-zone trust host-inbound-traffic protocols
 all
 user@host# set security zones security-zone trust interfaces reth0.0
 user@host# set security zones security-zone vpn host-inbound-traffic
 system-services all
 user@host# set security zones security-zone vpn host-inbound-traffic protocols all
 user@host# set security zones security-zone vpn interfaces st0.0

9. Configure security policies.

 [primary:node0][edit]
 user@host# set security policies from-zone trust to-zone untrust policy ANY match
 source-address any
 user@host# set security policies from-zone trust to-zone untrust policy ANY match
 destination-address any
 user@host# set security policies from-zone trust to-zone untrust policy ANY match
 application any
 user@host# set security policies from-zone trust to-zone vpn policy vpn-any then
 permit
Results From operational mode, confirm your configuration by entering the `show configuration` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

For brevity, this `show` command output includes only the configuration that is relevant to this example. Any other configuration on the system has been replaced with ellipses (...).

```
user@host> show configuration
version x.xx.x;
groups {
    node0 {
        system {
            host-name SRX58001;
        }
        interfaces {
            fxp0 {
                unit 0 {
                    family inet {
                        address 172.19.100.50/24;
                    }
                }
            }
        }
    }
    node1 {
        system {
            host-name SRX58002;
        }
        interfaces {
            fxp0 {
                unit 0 {
                    family inet {
                        address 172.19.100.51/24;
                    }
                }
            }
        }
    }
    apply-groups "${node}"
}
system {
    root-authentication {
        encrypted-password "$ABC123";
    }
}
chassis {
    cluster {
        reth-count 2;
        heartbeat-interval 1000;
        heartbeat-threshold 3;
        control-ports {
            fpc 2 port 0;
            fpc 14 port 0;
        }
        redundancy-group 0 {
            node 0 priority 254;
            node 1 priority 1;
        }
        redundancy-group 1 {
    }
```
node 0 priority 254;
node 1 priority 1;
preempt;
interface-monitor {
 xe-6/0/0 weight 255;
 xe-6/1/0 weight 255;
 xe-18/0/0 weight 255;
 xe-18/1/0 weight 255;
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
unit 0 {
 family inet {
 address 10.2.1.60/16;
 }
}
st0 {
 unit 0 {
 multipoint;
 family inet {
 address 5.4.3.2/32;
 }
 }
}

routing-options {
 static {
 route 0.0.0.0/0 {
 next-hop 10.2.1.1;
 }
 route 10.3.0.0/16 {
 next-hop 10.10.1.2;
 }
 }
}

security {
 zones {
 security-zone trust {
 host-inbound-traffic {
 system-services {
 all;
 }
 }
 interfaces {
 reth0.0;
 }
 }
 security-zone untrust {
 host-inbound-traffic {
 system-services {
 all;
 }
 }
 protocols {
 all;
 }
 interfaces {
 reth1.0;
 }
 }
 security-zone vpn {
 host-inbound-traffic {
 system-services {
 all;
 }
 }
 protocols {
 all;
 }
 interfaces {
 all;
 }
 }
 }
}
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

- Verifying Chassis Cluster Status on page 330
- Verifying Chassis Cluster Interfaces on page 331
- Verifying Chassis Cluster Statistics on page 331
- Verifying Chassis Cluster Control Plane Statistics on page 332
- Verifying Chassis Cluster Data Plane Statistics on page 332
- Verifying Chassis Cluster Redundancy Group Status on page 333
- Troubleshooting with Logs on page 333

Verifying Chassis Cluster Status

Purpose Verify the chassis cluster status, failover status, and redundancy group information.
Action From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
show chassis cluster status
```

Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>1</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>254</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Redundancy group: 0, Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>1</td>
<td>primary</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>254</td>
<td>secondary</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster Interfaces

Purpose Verify the chassis cluster interfaces.

Action From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}
user@host> show chassis cluster interfaces
```

Control link name: fxp1

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>xe-5/0/0</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>xe-5/1/0</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>xe-17/0/0</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>xe-17/1/0</td>
<td>255</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster Statistics

Purpose Verify information about chassis cluster services and control link statistics (heartbeats sent and received), fabric link statistics (probes sent and received), and the number of RTOs sent and received for services.

Action From operational mode, enter the `show chassis cluster statistics` command.

```
{primary:node0}
user@host> show chassis cluster statistics
```

Control link statistics:

```
Control link 0:
Heartbeat packets sent: 258689
Heartbeat packets received: 258684
Heartbeat packets errors: 0
```
Fabric link statistics:
 Child link 0
 Probes sent: 258681
 Probes received: 258681

Services Synchronized:
<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster Control Plane Statistics

Purpose Verify information about chassis cluster control plane statistics (heartbeats sent and received) and the fabric link statistics (probes sent and received).

Action From operational mode, enter the `show chassis cluster control-panel statistics` command.

{primary:node0}
user@host> show chassis cluster control-plane statistics

Control link statistics:
 Control link 0:
 Heartbeat packets sent: 258689
 Heartbeat packets received: 258684
 Heartbeat packets errors: 0

Fabric link statistics:
 Child link 0
 Probes sent: 258681
 Probes received: 258681

Verifying Chassis Cluster Data Plane Statistics

Purpose Verify information about the number of RTOs sent and received for services.
Action
From operational mode, enter the `show chassis cluster data-plane statistics` command.

```
{primary:node0}
user@host> show chassis cluster data-plane statistics
```

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>161</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>148</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Verifying Chassis Cluster Redundancy Group Status

Purpose
Verify the state and priority of both nodes in a cluster and information about whether the primary node has been preempted or whether there has been a manual failover.

Action
From operational mode, enter the `chassis cluster status redundancy-group` command.

```
{primary:node0}
user@host> show chassis cluster status redundancy-group
```

```
Cluster ID: 1
Redundancy-Group: 1, Failover count: 1
```

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>0</td>
<td>primary</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>254</td>
<td>secondary</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Troubleshooting with Logs

Purpose
Use these logs to identify any chassis cluster issues. You must run these logs on both nodes.

Action
From operational mode, enter these `show` commands.

```
user@host> show log jsrp
```
user@host> show log chassisd
user@host> show log messages
user@host> show log dcd
user@host> show traceoptions

Related Documentation

- Understanding Active/Passive Chassis Cluster Deployment on page 287
- Understanding Active/Passive Chassis Cluster Deployment with an IPsec Tunnel on page 317
- Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel (J-Web) on page 334

Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel (J-Web)

Supported Platforms SRX Series, vSRX

1. Enable clusters. See Step 1 in “Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel” on page 318.

2. Configure the management interface. See Step 2 in “Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel” on page 318.

4. Configure the redundancy groups.
 - Select Configure>System Properties>Chassis Cluster.
 - Enter the following information, and then click Apply:
 - Redundant ether-Interfaces Count: 2
 - Heartbeat Interval: 1000
 - Heartbeat Threshold: 3
 - Nodes: 0
 - Group Number: 0
 - Priorities: 254
 - Enter the following information, and then click Apply:
 - Nodes: 0
 - Group Number: 1
 - Priorities: 254
 - Enter the following information, and then click Apply:
Nodes: 1
Group Number: 0
Priorities: 1

• Enter the following information, and then click **Apply**:

 Nodes: 1
 Group Number: 1
 Priorities: 1
 Preempt: Select the check box.
 Interface Monitor—Interface: xe-5/0/0
 Interface Monitor—Weight: 255
 Interface Monitor—Interface: xe-5/1/0
 Interface Monitor—Weight: 255
 Interface Monitor—Interface: xe-17/0/0
 Interface Monitor—Weight: 255
 Interface Monitor—Interface: xe-17/1/0
 Interface Monitor—Weight: 255

5. Configure the redundant Ethernet interfaces.
 • Select **Configure > System Properties > Chassis Cluster**.
 • Select xe-5/1/0.
 • Enter reth1 in the Redundant Parent box.
 • Click **Apply**.
 • Select xe-17/1/0.
 • Enter reth1 in the Redundant Parent box.
 • Click **Apply**.
 • Select xe-5/0/0.
 • Enter reth0 in the Redundant Parent box.
 • Click **Apply**.
 • Select xe-17/0/0.
 • Enter reth0 in the Redundant Parent box.
 • Click **Apply**.
 • See Step 5 in “Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel” on page 318.
6. Configure the IPsec configuration. See Step 6 in "Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel" on page 318.

7. Configure the static routes.
 - Select Configure>Routing>Static Routing.
 - Click Add.
 - Enter the following information, and then click Apply:
 - Static Route Address: 0.0.0.0/0
 - Next-Hop Addresses: 10.2.1.1
 - Enter the following information, and then click Apply:
 - Static Route Address: 10.3.0.0/16
 - Next-Hop Addresses: 10.10.1.2

8. Configure the security zones. See Step 8 in "Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel" on page 318.

9. Configure the security policies. See Step 9 in "Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel" on page 318.

10. Click OK to check your configuration and save it as a candidate configuration, then click Commit Options>Commit.

 Related Documentation
 - Understanding Active/Passive Chassis Cluster Deployment with an IPsec Tunnel on page 317
 - Example: Configuring an Active/Passive Chassis Cluster Pair with an IPsec Tunnel on page 318
Enabling Multicast Routing or Asymmetric Routing

- Understanding Multicast Routing on a Chassis Cluster on page 337
- Understanding Asymmetric Routing Chassis Cluster Deployment on page 338
- Example: Configuring an Asymmetric Chassis Cluster Pair on page 340

Understanding Multicast Routing on a Chassis Cluster

Supported Platforms

SRX Series, vSRX

Multicast routing support across nodes in a chassis cluster allows multicast protocols, such as Protocol Independent Multicast (PIM) versions 1 and 2, Internet Group Management Protocol (IGMP), Session Announcement Protocol (SAP), and Distance Vector Multicast Routing Protocol (DVMRP), to send traffic across interfaces in the cluster. Note, however, that the multicast protocols should not be enabled on the chassis management interface (fxp0) or on the fabric interfaces (fab0 and fab1). Multicast sessions are synched across the cluster and maintained during redundant group failovers. During failover, as with other types of traffic, there might be some multicast packet loss.

Multicast data forwarding in a chassis cluster uses the incoming interface to determine whether or not the session remains active. Packets are forwarded to the peer node if a leaf session's outgoing interface is on the peer instead of on the incoming interface's node. Multicast routing on a chassis cluster supports tunnels for both incoming and outgoing interfaces.

Multicast traffic has an upstream (toward source) and downstream (toward subscribers) direction in traffic flows. The devices replicate (fanout) a single multicast packet to multiple networks that contain subscribers. In the chassis cluster environment, multicast packet fanouts can be active on either nodes.

If the incoming interface is active on the current node and backup on the peer node, then the session is active on the current node and backup on the peer node.

Multicast configuration on a chassis cluster is the same as multicast configuration on a standalone device. See the Junos OS Routing Protocols Library for Routing Devices for more information.
Understanding PIM Data Forwarding

Protocol Independent Multicast (PIM) is used between devices to track the multicast packets to be forwarded to each other.

A PIM session encapsulates multicast data into a PIM unicast packet. A PIM session creates the following sessions:

- Control session
- Data session

The data session saves the control session ID. The control session and the data session are closed independently. The incoming interface is used to determine whether the PIM session is active or not. If the outgoing interface is active on the peer node, packets are transferred to the peer node for transmission.

Understanding Multicast and PIM Session Synchronization

Synchronizing multicast and PIM sessions helps to prevent packet loss due to failover because the sessions do not need to be set up again when there is a failover.

In PIM sessions, the control session is synchronized to the backup node, and then the data session is synchronized.

In multicast sessions, the template session is synchronized to the peer node, then all the leaf sessions are synchronized, and finally the template session is synchronized again.

Related Documentation

- Understanding Asymmetric Routing Chassis Cluster Deployment on page 338
- Example: Configuring an Asymmetric Chassis Cluster Pair on page 340

Understanding Asymmetric Routing Chassis Cluster Deployment

Supported Platforms

SRX Series, vSRX

In this case, chassis cluster makes use of its asymmetric routing capability (see Figure 54 on page 339). Traffic received by a node is matched against that node's session table. The result of this lookup determines whether or not that the node processes the packet or forwards it to the other node over the fabric link. Sessions are anchored on the egress node for the first packet that created the session. If traffic is received on the node in which the session is not anchored, those packets are forwarded over the fabric link to the node where the session is anchored.

NOTE: The anchor node for the session can change if there are changes in routing during the session.
In this scenario, two Internet connections are used, with one being preferred. The connection to the trust zone is done by using a redundant Ethernet interface to provide LAN redundancy for the devices in the trust zone. This scenario describes two failover cases in which sessions originate in the trust zone with a destination of the Internet (untrust zone).

- Understanding Failures in the Trust Zone Redundant Ethernet Interface on page 339
- Understanding Failures in the Untrust Zone Interfaces on page 339

Understanding Failures in the Trust Zone Redundant Ethernet Interface

Under normal operating conditions, traffic flows from the trust zone interface ge-0/0/1, belonging to reth0.0, to the Internet. Because the primary Internet connection is on node 0, sessions are both created in node 0 and synced to node 1. However, session are only active on node 0.

A failure in interface ge-0/0/1 triggers a failover of the redundancy group, causing interface ge-7/0/1 in node 1 to become active. After the failover, traffic arrives at node 1. After session lookup, the traffic is sent to node 0 because the session is active on this node. Node 0 then processes the traffic and forwards it to the Internet. The return traffic follows a similar process. The traffic arrives at node 0 and gets processed for security purposes—for example, antispam scanning, antivirus scanning, and application of security policies—on node 0 because the session is anchored to node 0. The packet is then sent to node 1 through the fabric interface for egress processing and eventual transmission out of node 1 through interface ge-7/0/1.

Understanding Failures in the Untrust Zone Interfaces

In this case, sessions are migrated from node to node. Under normal operating conditions, traffic is processed by only node 0. A failure of interface ge-0/0/0 on node 0 causes a change in the routing table, so that it now points to interface ge-7/0/0 in node 1. After
the failure, sessions in node 0 become inactive, and the passive sessions in node 1 become active. Traffic arriving from the trust zone is still received on interface ge-0/0/1, but is forwarded to node 1 for processing. After traffic is processed in node 1, it is forwarded to the Internet through interface ge-7/0/0.

In this chassis cluster configuration, redundancy group 1 is used to control the redundant Ethernet interface connected to the trust zone. As configured in this scenario, redundancy group 1 fails over only if interface ge-0/0/1 or ge-7/0/1 fails, but not if the interfaces connected to the Internet fail. Optionally, the configuration could be modified to permit redundancy group 1 to monitor all interfaces connected to the Internet and fail over if an Internet link were to fail. So, for example, the configuration can allow redundancy group 1 to monitor ge-0/0/0 and make ge-7/0/1 active for reth0 if the ge-0/0/0 Internet link fails. (This option is not described in the following configuration examples.)

Related Documentation

- Understanding Multicast Routing on a Chassis Cluster on page 337
- Example: Configuring an Asymmetric Chassis Cluster Pair on page 340

Example: Configuring an Asymmetric Chassis Cluster Pair

Supported Platforms

SRX Series, vSRX

This example shows how to configure a chassis cluster pair of devices to allow asymmetric routing. Configuring asymmetric routing for a chassis cluster allows traffic received on either device to be processed seamlessly.

- Requirements on page 340
- Overview on page 341
- Configuration on page 343
- Verification on page 348

Requirements

Before you begin:

1. Physically connect a pair of devices together, ensuring that they are the same models. This example uses a pair of SRX1500 devices.
 a. To create the fabric link, connect a Gigabit Ethernet interface on one device to another Gigabit Ethernet interface on the other device.
 b. To create the control link, connect the control port of the two SRX1500 devices.

2. Connect to one of the devices using the console port. (This is the node that forms the cluster.)
 a. Set the cluster ID and node number.

```bash
user@host> set chassis cluster cluster-id 1 node 0 reboot
```
3. Connect to the other device using the console port.
 a. Set the cluster ID and node number.

```
user@host> set chassis cluster cluster-id 1 node 1 reboot
```

Overview

In this example, a chassis cluster provides asymmetric routing. As illustrated in Figure 55 on page 341, two Internet connections are used, with one being preferred. The connection to the trust zone is provided by a redundant Ethernet interface to provide LAN redundancy for the devices in the trust zone.

Figure 55: Asymmetric Routing Chassis Cluster Topology

In this example, you configure group (applying the configuration with the `apply-groups` command) and chassis cluster information. Then you configure security zones and security policies. See Table 33 on page 341 through Table 36 on page 343.

Table 33: Group and Chassis Cluster Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>node0</td>
<td>• Hostname: srxseries-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interface: fxp0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 192.168.100.50/24</td>
</tr>
<tr>
<td></td>
<td>node1</td>
<td>• Hostname: srxseries-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interface: fxp0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 192.168.100.51/24</td>
</tr>
</tbody>
</table>
Table 34: Chassis Cluster Configuration Parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric links</td>
<td>fab0</td>
<td>Interface: ge-0/0/7</td>
</tr>
<tr>
<td></td>
<td>fab1</td>
<td>Interface: ge-7/0/7</td>
</tr>
<tr>
<td>Heartbeat interval</td>
<td>–</td>
<td>1000</td>
</tr>
<tr>
<td>Heartbeat threshold</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Redundancy group</td>
<td>1</td>
<td>• Priority:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 0: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node 1: 1</td>
</tr>
<tr>
<td>Interfacemonitoring</td>
<td></td>
<td>Interface monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ge-0/0/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ge-7/0/3</td>
</tr>
<tr>
<td>Number of redundant Ethernet interfaces</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Interfaces</td>
<td>ge-0/0/1</td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10.4.0.202/24</td>
</tr>
<tr>
<td></td>
<td>ge-7/0/1</td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10.2.1.233/24</td>
</tr>
<tr>
<td></td>
<td>ge-0/0/3</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redundant parent: reth0</td>
</tr>
<tr>
<td></td>
<td>ge-7/0/3</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redundant parent: reth0</td>
</tr>
<tr>
<td></td>
<td>reth0</td>
<td>• Unit 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10.16.8.1/24</td>
</tr>
</tbody>
</table>

Table 35: Security Zone Configuration Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>trust</td>
<td>The reth0.0 interface is bound to this zone.</td>
</tr>
<tr>
<td>untrust</td>
<td>The ge-0/0/1 and ge-7/0/1 interfaces are bound to this zone.</td>
</tr>
</tbody>
</table>
Table 36: Security Policy Configuration Parameters

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Name</th>
<th>Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>This security policy permits traffic from the trust zone to the untrust zone.</td>
<td>ANY</td>
<td>• Match criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source-address any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• destination-address any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• application any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Action: permit</td>
</tr>
</tbody>
</table>

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
[primary:node0][edit]
set groups node0 system host-name srxseries-1
set groups node0 interfaces fxp0 unit 0 family inet address 192.168.100.50/24
set groups node1 system host-name srxseries-2
set groups node1 interfaces fxp0 unit 0 family inet address 192.168.100.51/24
set apply-groups "${node}"
set interfaces fab0 fabric-options member-interfaces ge-0/0/7
set interfaces fab1 fabric-options member-interfaces ge-7/0/7
set chassis cluster reth-count 1
set chassis cluster heartbeat-interval 1000
set chassis cluster heartbeat-threshold 3
set chassis cluster redundancy-group 1 node 0 priority 100
set chassis cluster redundancy-group 1 node 1 priority 1
set chassis cluster redundancy-group 1 interface-monitor ge-0/0/3 weight 255
set chassis cluster redundancy-group 1 interface-monitor ge-7/0/3 weight 255
set interfaces ge-0/0/1 unit 0 family inet address 1.4.0.202/24
set interfaces ge-0/0/3 gigether-options redundant-parent reth0
set interfaces ge-7/0/1 unit 0 family inet address 10.2.1.233/24
set interfaces ge-7/0/3 gigether-options redundant-parent reth0
set interfaces reth0 unit 0 family inet address 10.16.8.1/24
set routing-options static route 0.0.0.0/0 qualified-next-hop 10.4.0.1 metric 10
set routing-options static route 0.0.0.0/0 qualified-next-hop 10.2.1.1 metric 100
set security zones security-zone untrust interfaces ge-0/0/1.0
set security zones security-zone untrust interfaces ge-7/0/1.0
set security zones security-zone trust interfaces reth0.0
set security policies from-zone trust to-zone untrust policy ANY match source-address any
set security policies from-zone trust to-zone untrust policy ANY match destination-address any
set security policies from-zone trust to-zone untrust policy ANY match application any
set security policies from-zone trust to-zone untrust policy ANY then permit
```

Step-by-Step Procedure
To configure an asymmetric chassis cluster pair:

1. Configure the management interface.
2. Configure the fabric interface.

 [primary:node0][edit]
 user@host# set interfaces fab0 fabric-options member-interfaces ge-0/0/7
 user@host# set interfaces fab1 fabric-options member-interfaces ge-7/0/7

3. Configure the number of redundant Ethernet interfaces.

 [primary:node0][edit]
 user@host# set chassis cluster reth-count 1

4. Configure the redundancy groups.

 [primary:node0][edit]
 user@host# set chassis cluster heartbeat-interval 1000
 user@host# set chassis cluster heartbeat-threshold 3
 user@host# set chassis cluster node 0
 user@host# set chassis cluster node 1
 user@host# set chassis cluster redundancy-group 1 node 0 priority 100
 user@host# set chassis cluster redundancy-group 1 node 1 priority 1
 user@host# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/3
 weight 255
 user@host# set chassis cluster redundancy-group 1 interface-monitor ge-7/0/3
 weight 255

5. Configure the redundant Ethernet interfaces.

 [primary:node0][edit]
 user@host# set interfaces ge-0/0/1 unit 0 family inet address 1.4.0.202/24
 user@host# set interfaces ge-0/0/3 gigether-options redundant-parent reth0
 user@host# set interfaces ge-7/0/1 unit 0 family inet address 10.2.1.233/24
 user@host# set interfaces ge-7/0/3 gigether-options redundant-parent reth0
 user@host# set interfaces reth0 unit 0 family inet address 10.16.8.1/24

6. Configure the static routes (one to each ISP, with preferred route through ge-0/0/1).

 [primary:node0][edit]
 user@host# set routing-options static route 0.0.0.0/0 qualified-next-hop 10.4.0.1
 metric 10
 user@host# set routing-options static route 0.0.0.0/0 qualified-next-hop 10.2.1.1
 metric 100

7. Configure the security zones.

 [primary:node0][edit]
user@host# set security zones security-zone untrust interfaces ge-0/0/1.0
user@host# set security zones security-zone untrust interfaces ge-7/0/1.0
user@host# set security zones security-zone trust interfaces reth0.0

8. Configure the security policies.

[primary:node0][edit]
user@host# set security policies from-zone trust to-zone untrust policy ANY match
source-address any
user@host# set security policies from-zone trust to-zone untrust policy ANY match
destination-address any
user@host# set security policies from-zone trust to-zone untrust policy ANY match
application any
user@host# set security policies from-zone trust to-zone untrust policy ANY then
permit

Results From operational mode, confirm your configuration by entering the show configuration
command. If the output does not display the intended configuration, repeat the
configuration instructions in this example to correct it.

For brevity, this show command output includes only the configuration that is relevant
to this example. Any other configuration on the system has been replaced with ellipses
(...).

user@host> show configuration
version x.xx.x;
groups {
 node0 {
 system {
 host-names srxseries-1;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 192.168.100.50/24;
 }
 }
 }
 }
 }
 node1 {
 system {
 host-names srxseries-2;
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 192.168.100.51/24;
 }
 }
 }
 }
 }
 }
}
apply-groups "${node}";
chassis {
 cluster {
 reth-count 1;
 heartbeat-interval 1000;
 heartbeat-threshold 3;
 redundancy-group 1 {
 node 0 priority 100;
 node 1 priority 1;
 interface-monitor {
 ge-0/0/3 weight 255;
 ge-7/0/3 weight 255;
 }
 }
 }
 interfaces {
 ge-0/0/3 {
 gigether-options {
 redundant-parent reth0;
 }
 }
 ge-7/0/3 {
 gigether-options {
 redundant-parent reth0;
 }
 }
 ge-0/0/1 {
 unit 0 {
 family inet {
 address 10.4.0.202/24;
 }
 }
 }
 ge-7/0/1 {
 unit 0 {
 family inet {
 address 10.2.1.233/24;
 }
 }
 }
 fab0 {
 fabric-options {
 member-interfaces {
 ge-0/0/7;
 }
 }
 }
 fab1 {
 fabric-options {
 member-interfaces {
 ge-7/0/7;
 }
 }
 }
 }
}

reth0 {
 gigether–options {
 redundancy–group 1;
 }
 unit 0 {
 family inet {
 address 10.16.8.1/24;
 }
 }
}
...
routing-options {
 static {
 route 0.0.0.0/0 {
 next-hop 10.4.0.1;
 metric 10;
 }
 }
}
}
routing-options {
 static {
 route 0.0.0.0/0 {
 next-hop 10.2.1.1;
 metric 100;
 }
 }
}
}
security {
 zones {
 security–zone untrust {
 interfaces {
 ge-0/0/1.0;
 ge-7/0/1.0;
 }
 }
 security–zone trust {
 interfaces {
 reth0.0;
 }
 }
 }
 policies {
 from-zone trust to-zone untrust {
 policy ANY {
 match {
 source-address any;
 destination-address any;
 application any;
 }
 then {
 permit;
 }
 }
 }
 }
}
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

- Verifying Chassis Cluster Status on page 348
- Verifying Chassis Cluster Interfaces on page 348
- Verifying Chassis Cluster Statistics on page 349
- Verifying Chassis Cluster Control Plane Statistics on page 349
- Verifying Chassis Cluster Data Plane Statistics on page 350
- Verifying Chassis Cluster Redundancy Group Status on page 350
- Troubleshooting with Logs on page 351

Verifying Chassis Cluster Status

Purpose
Verify the chassis cluster status, failover status, and redundancy group information.

Action
From operational mode, enter the `show chassis cluster status` command.

```
{primary:node0}
user@host> show chassis cluster status
Cluster ID: 1

Node          Priority   Status     Preempt  Manual failover
node0         100        primary    no       no
node1         1           secondary  no       no

Redundancy group: 1 , Failover count: 1
```

Verifying Chassis Cluster Interfaces

Purpose
Verify information about chassis cluster interfaces.

Action
From operational mode, enter the `show chassis cluster interfaces` command.

```
{primary:node0}
user@host> show chassis cluster interfaces
Control link name: fxp1

Redundant-ethernet Information:
Name    Status     Redundancy-group
reth0   Up          1

Interface Monitoring:
Interface    Weight  Status   Redundancy-group
ge-0/0/3        255   Up           1
```
Verifying Chassis Cluster Statistics

Purpose Verify information about the statistics of the different objects being synchronized, the fabric and control interface hellos, and the status of the monitored interfaces in the cluster.

Action From operational mode, enter the `show chassis cluster statistics` command.

```
{primary:node0}
user@host> show chassis cluster statistics

Control link statistics:
  Control link 0:
    Heartbeat packets sent: 228
    Heartbeat packets received: 2370
    Heartbeat packets errors: 0

Fabric link statistics:
  Child link 0
    Probes sent: 2272
    Probes received: 597

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>147</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Verifying Chassis Cluster Control Plane Statistics

Purpose Verify information about chassis cluster control plane statistics (heartbeats sent and received) and the fabric link statistics (probes sent and received).
Verifying Chassis Cluster Control Plane Statistics

Purpose
Verify information about the number of RTOs sent and received for services.

Action
From operational mode, enter the `show chassis cluster control-plane statistics` command.

```
{primary:node0}
user@host> show chassis cluster control-plane statistics

Control link statistics:
  Control link 0:
    Heartbeat packets sent: 258689
    Heartbeat packets received: 258684
    Heartbeat packets errors: 0

Fabric link statistics:
  Child link 0
    Probes sent: 258681
    Probes received: 258681
```

Verifying Chassis Cluster Data Plane Statistics

Purpose
Verify information about the number of RTOs sent and received for services.

Action
From operational mode, enter the `show chassis cluster data-plane statistics` command.

```
{primary:node0}
user@host> show chassis cluster data-plane statistics

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>147</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>requests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session ageout refresh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>replies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Verifying Chassis Cluster Redundancy Group Status

Purpose
Verify the state and priority of both nodes in a cluster and information about whether the primary node has been preempted or whether there has been a manual failover.
Action From operational mode, enter the `chassis cluster status redundancy-group` command.

```
{primary:node0}
user@host> show chassis cluster status redundancy-group 1
Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>100</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
```

Troubleshooting with Logs

Purpose Use these logs to identify any chassis cluster issues. You must run these logs on both nodes.

Action From operational mode, enter these `show` commands.

```
user@host> show log jsrp
user@host> show log chassisd
user@host> show log messages
user@host> show log dcd
user@host> show traceoptions
```

Related Documentation

- Understanding Multicast Routing on a Chassis Cluster on page 337
- Understanding Asymmetric Routing Chassis Cluster Deployment on page 338
CHAPTER 22

Configuring Chassis Cluster Layer 2 Ethernet Switching

- Layer 2 Ethernet Switching Capability in a Chassis Cluster Mode on page 353
- Example: Configuring Switch Fabric Interfaces to Enable Switching in Chassis Cluster Mode (CLI) on page 355
- Example: Configuring IRB and VLAN with Members Across Two Nodes (CLI Procedure) on page 357

Layer 2 Ethernet Switching Capability in a Chassis Cluster Mode

Supported Platforms SRX1500, SRX300, SRX320, SRX340, SRX345, SRX550M

- Understanding Layer 2 Ethernet Switching Capability in a Chassis Cluster on SRX Series Devices on page 353
- Understanding Chassis Cluster Failover and New Primary Election on page 354

Understanding Layer 2 Ethernet Switching Capability in a Chassis Cluster on SRX Series Devices

Ethernet ports support various Layer 2 features such as spanning-tree protocols (STPs), IEEE 802.1x, Link Layer Discovery Protocol (LLDP), Multiple VLAN Registration Protocol (MVRP), and snooping. With the extension of Layer 2 switching capability to devices in a chassis cluster, you can use Ethernet switching features on both nodes of a chassis cluster. You can configure the Ethernet ports on either node for family Ethernet switching. You can also configure a Layer 2 VLAN domain with member ports from both nodes and the Layer 2 switching protocols on both devices.

Figure 56 on page 354 shows the Layer 2 switching across chassis cluster nodes.
To ensure that Layer 2 switching works seamlessly across chassis cluster nodes, a dedicated physical link connecting the nodes is required. This type of link is called a *switching fabric interface*. Its purpose is to carry Layer 2 traffic between nodes.

NOTE: Configuring a LAG with members across nodes is not supported.

CAUTION: If a switching fabric interface is not configured on both nodes, and if you try to configure Ethernet switching-related features on the nodes, then the behavior of the nodes might be unpredictable.

Understanding Chassis Cluster Failover and New Primary Election

When chassis cluster failover occurs, a new primary node is elected and the Ethernet switching process (eswd) runs in a different node. During failover, the chassis control subsystem is restarted. Also during failover, traffic outage occurs until the PICs are up and the VLAN entries are reprogrammed. After failover, all Layer 2 protocols reconverge because Layer 2 protocol states are not maintained in the secondary node.

NOTE: The Q-in-Q feature in chassis cluster mode is not supported because of chip limitation for swfab interface configuration in Broadcom chipsets.

Related Documentation

- Example: Configuring Switch Fabric Interfaces to Enable Switching in Chassis Cluster Mode (CLI) on page 355
- Example: Configuring IRB and VLAN with Members Across Two Nodes (CLI Procedure) on page 357
- Example: Configuring Aggregated Ethernet Device with LAG and LACP (CLI Procedure)
Example: Configuring Switch Fabric Interfaces to Enable Switching in Chassis Cluster Mode (CLI)

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, SRX345, SRX550M

This example shows how to configure switching fabric interfaces to enable switching in chassis cluster mode.

- Requirements on page 355
- Overview on page 355
- Configuration on page 355

Requirements

The physical link used as the switch fabric member must be directly connected to the device. Switching supported ports must be used for switching fabric interfaces. See *Ethernet Ports Switching Overview* for switching supported ports.

Before you begin, See “Example: Configuring the Chassis Cluster Fabric Interfaces” on page 107.

Overview

In this example, pseudointerfaces swfab0 and swfab1 are created for Layer 2 fabric functionality. You also configure dedicated Ethernet ports on each side of the node to be associated with the swfab interfaces.

Configuration

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```plaintext
set interfaces swfab0 fabric-options member-interfaces ge-0/0/9
set interfaces swfab0 fabric-options member-interfaces ge-0/0/10
set interfaces swfab1 fabric-options member-interfaces ge-7/0/9
set interfaces swfab1 fabric-options member-interfaces ge-7/0/10
```

Step-by-Step Procedure

To configure swfab interfaces:

1. Configure swfab0 and swfab1 and associate these switch fabric interfaces to enable switching across the nodes. Note that swfab0 corresponds to node 0 and swfab1 corresponds to node 1.

   ```plaintext
   [primary:node0] [edit]
   user@host# set interfaces swfab0 fabric-options member-interfaces ge-0/0/9
   user@host# set interfaces swfab0 fabric-options member-interfaces ge-0/0/10
   user@host# set interfaces swfab1 fabric-options member-interfaces ge-7/0/9
   user@host# set interfaces swfab1 fabric-options member-interfaces ge-7/0/10
   ```
2. If you are done configuring the device, commit the configuration.

 [primary:node0] [edit]
 user@host# commit

Results From configuration mode, confirm your configuration by entering the `show interfaces swfab0` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct the configuration.

 [edit]
 user@host# show interfaces swfab0
 fabric-options{
 member-interfaces {
 ge-0/0/9;
 ge-0/0/10;
 }
 }

Verification

To confirm that the configuration is working properly, perform these tasks:

- Verifying Switching Fabric Ports on page 356

Verifying Switching Fabric Ports

Purpose Verify that you are able to configure multiple ports as members of switching fabric ports.

Action From configuration mode, enter the `show interfaces swfab0` command to view the configured interfaces for each port.

 user@host# show interfaces swfab0
 fabric-options{
 member-interfaces {
 ge-0/0/9;
 ge-0/0/10;
 }
 }

From configuration mode, enter the `show chassis cluster ethernet-switching interfaces` command to view the appropriate member interfaces.

 user@host# run show chassis cluster ethernet-switching interfaces
 swfab0:
 Name Status
 ge-0/0/9 up
 ge-0/0/10 up

 swfab1:
 Name Status
 ge-7/0/9 up
 ge-7/0/10 up
Related Documentation

- SRX Series Chassis Cluster Configuration Overview on page 62

Example: Configuring IRB and VLAN with Members Across Two Nodes (CLI Procedure)

Supported Platforms

- SRX1500, SRX300, SRX320, SRX340, SRX345, SRX550M

 - Requirements on page 357
 - Overview on page 357
 - Configuration on page 357
 - Verification on page 359

Requirements

No special configuration beyond device initialization is required before configuring this feature.

Overview

This example shows the configuration of integrated routing and bridging (IRB) and configuration of a VLAN with members across node 0 and node 1.

Configuration

CLI Quick Configuration

To quickly configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set interfaces ge-0/0/3 unit 0 family ethernet-switching interface-mode access
set interfaces ge-0/0/3 unit 0 family ethernet-switching vlan members vlan100
set interfaces ge-0/0/4 unit 0 family ethernet-switching interface-mode access
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members vlan100
set interfaces ge-0/0/5 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-0/0/5 unit 0 family ethernet-switching vlan members vlan100
set interfaces irb unit 100 family inet address 192.0.2.100/24
set vlans vlan100 vlan-id 100
set vlans vlan100 l3-interface irb.100
```

Step-by-Step Procedure

To configure IRB and a VLAN:

1. Configure Ethernet switching on the node0 interface.

   ```
   [primary:node0] [edit]
   user@host# set interfaces ge-0/0/3 unit 0 family ethernet-switching interface-mode access
   user@host# set interfaces ge-0/0/4 unit 0 family ethernet-switching interface-mode access
   ```

2. Configure Ethernet switching on the node1 interface.

   ```
   [primary:node0] [edit]
   ```
user@host# set interfaces ge-7/0/5 unit 0 family ethernet-switching interface-mode trunk

3. Create VLAN vlan100 with vlan-id 100.
 [primary:node0] [edit]
 user@host# set vlans vlan100 vlan-id 100

4. Add interfaces from both nodes to the VLAN.
 [primary:node0] [edit]
 user@host# set interfaces ge-0/0/3 unit 0 family ethernet-switching vlan members vlan100
 user@host# set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members vlan100
 user@host# set interfaces ge-7/0/5 unit 0 family ethernet-switching vlan members vlan100

5. Create an IRB logical interface.
 user@host# set interfaces irb unit 100 family inet address 192.0.2.100/24

6. Associate an IRB interface with the VLAN.
 user@host# set vlans vlan100 l3-interface irb.100

7. If you are done configuring the device, commit the configuration.
 [edit]
 user@host# commit

Results From configuration mode, confirm your configuration by entering the show vlans and show interfaces commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct the configuration.

 [edit]
 user@host# show vlans
 vlan100 {
 vlan-id 100;
 l3-interface irb.100;
 }
 [edit]
 user@host# show interfaces
 ge-0/0/3 {
 unit 0 {
 family ethernet-switching;
 interface-mode access;
 vlan {
 members vlan100;
 }
 }
 }
ge-0/0/4 {
 unit 0 {
 family ethernet-switching;
 interface-mode access;
 vlan {
 members vlan100;
 }
 }
}

ge-7/0/5 {
 unit 0 {
 family ethernet-switching;
 interface-mode trunk;
 vlan {
 members vlan100;
 }
 }
 vlan {
 unit 100 {
 family inet
 address 192.0.2.100/24;
 }
 }
}

Verification

Verifying VLAN and IRB

Purpose
Verify that the configurations of VLAN and IRB are working properly.

Action
From operational mode, enter the show interfaces terse ge-0/0/3 command to view the node 0 interface.

```
user@host> show interfaces terse ge-0/0/3
Interface          Admin Link Proto  Local          Remote
ge-0/0/3            up    up          eth-switch
ge-0/0/3.0          up    up
```

From operational mode, enter the show interfaces terse ge-0/0/4 command to view the node 0 interface.

```
user@host> show interfaces terse ge-0/0/4
Interface          Admin Link Proto  Local          Remote
ge-0/0/4            up    up          eth-switch
ge-0/0/4.0          up    up
```
From operational mode, enter the `show interfaces terse ge-7/0/5` command to view the node1 interface.

```
user@host> show interfaces terse ge-7/0/5
Interface               Admin Link Proto    Local                 Remote
ge-7/0/5                up    up
ge-7/0/5.0              up    up   eth-switch
```

From operational mode, enter the `show vlans` command to view the VLAN interface.

```
user@host> show vlans
Routing instance      VLAN name     Tag      Interfaces
default-switch        default        1       ge-0/0/3.0*
default-switch        vlan100        100     ge-0/0/4.0*  
                                   ge-7/0/5.0*
```

Meaning The output shows the VLAN and IRB are configured and working fine.

Related Documentation
- SRX Series Chassis Cluster Configuration Overview on page 62
Configuring Media Access Control Security (MACsec)

Understanding Media Access Control Security (MACsec)

Media Access Control Security (MACsec) is an industry-standard security technology that provides secure communication for all traffic on Ethernet links. MACsec provides point-to-point security on Ethernet links between directly connected nodes and is capable of identifying and preventing most security threats, including denial of service, intrusion, man-in-the-middle, masquerading, passive wiretapping, and playback attacks.

MACsec allows you to secure an Ethernet link for almost all traffic, including frames from the Link Layer Discovery Protocol (LLDP), Link Aggregation Control Protocol (LACP), Dynamic Host Configuration Protocol (DHCP), Address Resolution Protocol (ARP), and other protocols that are not typically secured on an Ethernet link because of limitations with other security solutions. MACsec can be used in combination with other security protocols such as IP Security (IPsec) and Secure Sockets Layer (SSL) to provide end-to-end network security.

Starting in Junos OS Release 15.1X49-D60, Media Access Control Security (MACsec) is supported on control and fabric ports of SRX340 and SRX345 devices in chassis cluster mode.

This topic contains the following sections:

- How MACsec Works on page 361
- Understanding Connectivity Associations and Secure Channels on page 362
- Understanding Static Connectivity Association Key Security Mode on page 362
- MACsec Considerations on page 363

How MACsec Works

This topic covers typically how MACsec works. For understanding and configuring MACsec support on SRX340 and SRX345 devices, See Configuring Media Access Control Security
To determine if a feature is supported by a specific platform or Junos OS release, refer Feature Explorer.

MACsec provides industry-standard security through the use of secured point-to-point Ethernet links. The point-to-point links are secured after matching security keys. When you enable MACsec using static connectivity association key (CAK) security mode, user-configured pre-shared keys are exchanged and verified between the interfaces at each end of the point-to-point Ethernet link.

Once MACsec is enabled on a point-to-point Ethernet link, all traffic traversing the link is MACsec-secured through the use of data integrity checks and, if configured, encryption.

The data integrity checks verify the integrity of the data. MACsec appends an 8-byte header and a 16-byte tail to all Ethernet frames traversing the MACsec-secured point-to-point Ethernet link, and the header and tail are checked by the receiving interface to ensure that the data was not compromised while traversing the link. If the data integrity check detects anything irregular about the traffic, the traffic is dropped.

MACsec can also be used to encrypt all traffic on the Ethernet link. The encryption used by MACsec ensures that the data in the Ethernet frame cannot be viewed by anybody monitoring traffic on the link.

Encryption is enabled for all traffic entering or leaving the interface when MACsec is enabled using static CAK security mode, by default.

MACsec is configured on point-to-point Ethernet links between MACsec-capable interfaces. If you want to enable MACsec on multiple Ethernet links, you must configure MACsec individually on each point-to-point Ethernet link.

Understanding Connectivity Associations and Secure Channels

MACsec is configured in connectivity associations. MACsec is enabled when a connectivity association is assigned to an interface.

When you enable MACsec using static CAK or dynamic security mode, you have to create and configure a connectivity association. Two secure channels—one secure channel for inbound traffic and another secure channel for outbound traffic—are automatically created. The automatically-created secure channels do not have any user-configurable parameters; all configuration is done in the connectivity association outside of the secure channels.

Understanding Static Connectivity Association Key Security Mode

When you enable MACsec using static connectivity association key (CAK) security mode, two security keys—a connectivity association key (CAK) that secures control plane traffic and a randomly-generated secure association key (SAK) that secures data plane traffic—are used to secure the point-to-point Ethernet link. Both keys are regularly exchanged between both devices on each end of the point-to-point Ethernet link to ensure link security.

You initially establish a MACsec-secured link using a pre-shared key when you are using static CAK security mode to enable MACsec. A pre-shared key includes a connectivity
association name (CKN) and its own connectivity association key (CAK). The CKN and CAK are configured by the user in the connectivity association and must match on both ends of the link to initially enable MACsec.

Once matching pre-shared keys are successfully exchanged, the MACsec Key Agreement (MKA) protocol is enabled. The MKA protocol is responsible for maintaining MACsec on the link, and decides which switch on the point-to-point link becomes the key server. The key server then creates an SAK that is shared with the switch at the other end of the point-to-point link only, and that SAK is used to secure all data traffic traversing the link. The key server will continue to periodically create and share a randomly-created SAK over the point-to-point link for as long as MACsec is enabled.

You enable MACsec using static CAK security mode by configuring a connectivity association on both ends of the link. All configuration is done within the connectivity association but outside of the secure channel. Two secure channels—one for inbound traffic and one for outbound traffic—are automatically created when using static CAK security mode. The automatically-created secure channels do not have any user-configurable parameters that cannot already be configured in the connectivity association.

We recommend enabling MACsec using static CAK security mode. Static CAK security mode ensures security by frequently refreshing to a new random security key and by only sharing the security key between the two devices on the MACsec-secured point-to-point link. Additionally, some optional MACsec features—replay protection, SCI tagging, and the ability to exclude traffic from MACsec—are only available when you enable MACsec using static CAK security mode.

MACsec Considerations

All types of Spanning Tree Protocol frames cannot currently be encrypted using MACsec.

The connectivity association can be defined anywhere, either global or node specific or any other configuration group as long as it is visible to the MACsec interface configuration.

NOTE: Starting with Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, the 802.1x protocol process (daemon) does not support restart on SRX340 and SRX345 devices.

Related Documentation

- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440

Configuring Media Access Control Security (MACsec)

Supported Platforms

SRX340, SRX345

Starting in Junos OS Release 15.1X49-D60, Media Access Control Security (MACsec) is supported on control and fabric ports of SRX340 and SRX345 devices in chassis cluster mode.
You can configure MACsec on control and fabric ports on SRX340 and SRX345 devices in chassis cluster to secure point-to-point Ethernet links between the peer devices in a cluster. Each point-to-point Ethernet link that you want to secure using MACsec must be configured independently. You can enable MACsec on device-to-device links using static connectivity association key (CAK) security mode.

WARNING: SRX340 and SRX345 devices currently do not support MACsec for host-to-host or switch-to-host connections.

NOTE: For MACsec configurations, identical configurations must exist on both the ends. That is, each node should contain the same configuration as the other node. If the other node is not configured or improperly configured with MACsec on the other side, the port is disabled and stops forwarding the traffic.

NOTE: On SRX340 and SRX345 devices, fabric interfaces must be configured such that the Media Access Control Security (MACsec) configurations are local to the nodes. Otherwise, the fabric link will not be reachable.

The configuration steps for both processes are provided in this document.

- Configuring MACsec Using Static Connectivity Association Key Security Mode on page 365
- Configuring Static CAK on the Chassis Cluster Control Port on page 370
- Configuring Static CAK on the Chassis Cluster Fabric Port on page 371
- Considerations for Configuring MACsec on Control Ports on page 371
- Configuring MACsec on Control Ports on page 372
- Considerations for Configuring MACsec on Fabric Ports on page 372
Configuring MACsec Using Static Connectivity Association Key Security Mode

You can enable MACsec using static connectivity association key (CAK) security mode on a point-to-point Ethernet link connecting devices. This procedure shows you how to configure MACsec using static CAK security mode.

BEST PRACTICE: We recommend enabling MACsec using static CAK security mode on device-to-device links. Static CAK security mode ensures security by frequently refreshing to a new random secure association key (SAK) and by only sharing the SAK between the two devices on the MACsec-secured point-to-point link. Additionally, some optional MACsec features—replay protection, SCI tagging, and the ability to exclude traffic from MACsec—are only available for MACsec-secured device-to-device connections that are enabled using static CAK security mode.

When you enable MACsec using static CAK security mode, a pre-shared key is exchanged between the devices on each end of the point-to-point Ethernet link. The pre-shared key includes a connectivity association name (CKN) and a connectivity association key (CAK). The CKN and CAK are configured by the user in the connectivity association and must match on both ends of the link to initially enable MACsec.

After the pre-shared keys are exchanged and verified, the MACsec Key Agreement (MKA) protocol, which enables and maintains MACsec on the link, is enabled. The MKA is responsible for selecting one of the two devices on the point-to-point link as the key server. The key server then creates a randomized security key that is shared only with the other device over the MACsec-secured link. The randomized security key enables and maintains MACsec on the point-to-point link. The key server will continue to periodically create and share a randomly-created security key over the point-to-point link for as long as MACsec is enabled.

You enable MACsec using static CAK security mode by configuring a connectivity association on both ends of the link. All configuration is done within the connectivity association but outside of the secure channel. Two secure channels—one for inbound traffic and one for outbound traffic—are automatically created when using static CAK security mode. The automatically-created secure channels do not have any user-configurable parameters that cannot already be configured in the connectivity association.

To configure MACsec using static CAK security mode to secure a device-to-device Ethernet link:
1. Create a connectivity association. You can skip this step if you are configuring an existing connectivity association.

```
[edit security macsec]
user@host# set connectivity-association connectivity-association-name
```

For instance, to create a connectivity association named `ca1`, enter:

```
[edit security macsec]
user@host# set connectivity-association ca1
```

2. Configure the MACsec security mode as `static-cak` for the connectivity association.

```
[edit security macsec]
user@host# set connectivity-association connectivity-association-name security-mode static-cak
```

For instance, to configure the MACsec security mode to `static-cak` on connectivity association `ca1`:

```
[edit security macsec]
user@host# set connectivity-association ca1 security-mode static-cak
```

3. Create the pre-shared key by configuring the connectivity association key name (CKN) and connectivity association key (CAK).

```
[edit security macsec]
user@host# set connectivity-association connectivity-association-name pre-shared-key ckn hexadecimal-number
user@host# set connectivity-association connectivity-association-name pre-shared-key cak hexadecimal-number
```

A pre-shared key is exchanged between directly-connected links to establish a MACsec-secure link. The pre-shared-key includes the CKN and the CAK. The CKN is a 64-digit hexadecimal number and the CAK is a 32-digit hexadecimal number. The CKN and the CAK must match on both ends of a link to create a MACsec-secured link.

NOTE: To maximize security, we recommend configuring all 64 digits of a CKN and all 32 digits of a CAK.

If you do not configure all 64 digits of a CKN or all 32 digits of a CAK, however, all remaining digits will be auto-configured to 0.

After the pre-shared keys are successfully exchanged and verified by both ends of the link, the MACsec Key Agreement (MKA) protocol is enabled and manages the secure link. The MKA protocol then elects one of the two directly-connected devices as the key server. The key server then shares a random security with the other device over the MACsec-secure point-to-point link. The key server will continue to periodically create and share a random security key with the other device over the MACsec-secured point-to-point link as long as MACsec is enabled.
To configure a CKN of
37c9c2c45ddd012aa5bc8ef284aa23ff6729ee2e4acb66e91fe34ba2cd9fe311 and CAK
of 228ef255aa23ff6729ee664acb66e91f on connectivity association ca1:

[edit security macsec]
user@host# set connectivity-association ca1 pre-shared-key ckn
37c9c2c45ddd012aa5bc8ef284aa23ff6729ee2e4acb66e91fe34ba2cd9fe311
user@host# set connectivity-association ca1 pre-shared-key cak
228ef255aa23ff6729ee664acb66e91f

NOTE: MACsec is not enabled until a connectivity association is attached to an interface. See the final step of this procedure to attach a connectivity association to an interface.

4. (Optional) Set the MKA key server priority.

[edit security macsec connectivity-association connectivity-association-name]
user@host# set mka key-server-priority priority-number

Specifies the key server priority used by the MKA protocol to select the key server. The device with the lower priority-number is selected as the key server.

The default priority-number is 16.

If the key-server-priority is identical on both sides of the point-to-point link, the MKA protocol selects the interface with the lower MAC address as the key server. Therefore, if this statement is not configured in the connectivity associations at each end of a MACsec-secured point-to-point link, the interface with the lower MAC address becomes the key server.

To change the key server priority to 0 to increase the likelihood that the current device is selected as the key server when MACsec is enabled on the interface using connectivity association ca1:

[edit security macsec connectivity-association ca1]
user@host# set mka key-server-priority 0

To change the key server priority to 255 to decrease the likelihood that the current device is selected as the key server in connectivity association ca1:

[edit security macsec connectivity-association ca1]
user@host# set mka key-server-priority 255

5. (Optional) Set the MKA transmit interval.

[edit security macsec connectivity-association connectivity-association-name]
user@host# set mka transmit-interval interval

The MKA transmit interval setting sets the frequency for how often the MKA protocol data unit (PDU) is sent to the directly connected device to maintain MACsec connectivity on the link. A lower interval increases bandwidth overhead on the link; a higher interval optimizes MKA protocol communication.
The default interval is 2000ms. We recommend increasing the interval to 6000 ms in high-traffic load environments. The transmit interval settings must be identical on both ends of the link when MACsec using static CAK security mode is enabled.

For instance, if you wanted to increase the MKA transmit interval to 6000 milliseconds when connectivity association ca1 is attached to an interface:

```
[edit security macsec connectivity-association ca1]
user@host# set mka transmit-interval 6000
```

6. (Optional) Disable MACsec encryption.

```
[edit security macsec connectivity-association connectivity-association-name]
user@host# set no-encryption
```

Encryption is enabled for all traffic entering or leaving the interface when MACsec is enabled using static CAK security mode, by default.

When encryption is disabled, traffic is forwarded across the Ethernet link in clear text. You are able to view unencrypted data in the Ethernet frame traversing the link when you are monitoring it. The MACsec header is still applied to the frame, however, and all MACsec data integrity checks are run on both ends of the link to ensure the traffic sent or received on the link has not been tampered with and does not represent a security threat.

7. (Optional) Set an offset for all packets traversing the link.

```
[edit security macsec connectivity-association connectivity-association-name]
user@host# set offset (0 | 30 | 50)
```

For instance, if you wanted to set the offset to 30 in the connectivity association named ca1:

```
[edit security macsec connectivity-association ca1]
user@host# set offset 30
```

The default offset is 0. All traffic in the connectivity association is encrypted when encryption is enabled and an offset is not set.

When the offset is set to 30, the IPv4 header and the TCP/UDP header are unencrypted while encrypting the rest of the traffic. When the offset is set to 50, the IPv6 header and the TCP/UDP header are unencrypted while encrypting the rest of the traffic.

You would typically forward traffic with the first 30 or 50 octets unencrypted if a feature needed to see the data in the octets to perform a function, but you otherwise prefer to encrypt the remaining data in the frames traversing the link. Load balancing features, in particular, typically need to see the IP and TCP/UDP headers in the first 30 or 50 octets to properly load balance traffic.

8. (Optional) Enable replay protection.

```
[edit security macsec connectivity-association connectivity-association-name]
user@host# set replay-protect replay-window-size number-of-packets
```
When MACsec is enabled on a link, an ID number is assigned to each packet on the MACsec-secured link.

When replay protection is enabled, the receiving interface checks the ID number of all packets that have traversed the MACsec-secured link. If a packet arrives out of sequence and the difference between the packet numbers exceeds the replay protection window size, the packet is dropped by the receiving interface. For instance, if the replay protection window size is set to five and a packet assigned the ID of 1006 arrives on the receiving link immediately after the packet assigned the ID of 1000, the packet that is assigned the ID of 1006 is dropped because it falls outside the parameters of the replay protection window.

Replay protection is especially useful for fighting man-in-the-middle attacks. A packet that is replayed by a man-in-the-middle attacker on the Ethernet link will arrive on the receiving link out of sequence, so replay protection helps ensure the replayed packet is dropped instead of forwarded through the network.

Replay protection should not be enabled in cases where packets are expected to arrive out of order.

You can require that all packets arrive in order by setting the replay window size to 0.

To enable replay protection with a window size of five on connectivity association ca1:

```bash
[edit security macsec connectivity-association ca1]
user@host# set replay-protect replay-window-size 5
```

9. (Optional) Exclude a protocol from MACsec.

```bash
[edit security macsec connectivity-association connectivity-association-name]
user@host# set exclude-protocol protocol-name
```

For instance, if you did not want Link Level Discovery Protocol (LLDP) to be secured using MACsec:

```bash
[edit security macsec connectivity-association connectivity-association-name]
user@host# set exclude-protocol lldp
```

When this option is enabled, MACsec is disabled for all packets of the specified protocol—in this case, LLDP—that are sent or received on the link.

10. Create a connectivity association for enabling MACsec on a chassis cluster control interface.

```bash
[edit security macsec]
user@host# set security macsec cluster-control-port<port no> connectivity-association CA
```

NOTE: For SRX340 and SRX345 devices, ge-0/0/1 is a control port for the chassis cluster and assigned as cluster-control-port 0.

Assigning the connectivity association to an interface is the final configuration step for enabling MACsec on an interface.
For instance, to assign connectivity association ca1 to interface ge-0/0/1:

```
[edit security macsec]
user@host# set interfaces ge-0/0/0/1 connectivity-association ca1
```

11. Create a connectivity association for enabling MACsec on a chassis cluster fabric interface.

```
[edit security macsec]
user@host# set security macsec cluster-control-port <port no> connectivity-association CA_FAB
```

NOTE: For SRX340 and SRX345 devices, ge-0/0/0 is a fabric port for the chassis cluster.

MACsec using static CAK security mode is not enabled until a connectivity association on the opposite end of the link is also configured, and contains pre-shared keys that match on both ends of the link.

Configuring Static CAK on the Chassis Cluster Control Port

To establish a CA over a chassis cluster control link on two SRX Series devices.

1. Configure the MACsec security mode as **static-cak** for the connectivity association:

```
[edit security macsec]
user@host# set security macsec connectivity-association ca1 security-mode static-cak
```

2. Create the pre-shared key by configuring the connectivity association key name (CKN).

```
[edit security macsec]
user@host# set security macsec connectivity-association ca1 pre-shared-key ckn "MACSEC_KEY_NAME"
```

3. Create the pre-shared key by configuring the connectivity association key (CAK).

```
[edit security macsec]
user@host# set security macsec connectivity-association ca1 pre-shared-key cak "MACSEC_KEY"
```

4. Specify a chassis cluster control port for the connectivity association.

```
[edit security macsec]
user@host# set security macsec cluster-control-port 0 connectivity-association ca1
```
Configuring Static CAK on the Chassis Cluster Fabric Port

To establish a CA over a chassis cluster fabric link on two SRX Series devices:

1. Configure the MACsec security mode as static-cak for the connectivity association.

   ```
   [edit security macsec]
   user@host# set security macsec connectivity-association ca2 security-mode static-cak
   ```

2. Create the pre-shared key by configuring the connectivity association key name (CKN).

   ```
   [edit security macsec]
   user@host# set security macsec connectivity-association ca2 pre-shared-key ckn
   "MACSEC_KEY_NAME"
   ```

3. Create the pre-shared key by configuring the connectivity association key (CAK).

   ```
   [edit security macsec]
   user@host# set security macsec connectivity-association ca2 pre-shared-key cak
   "MACSEC_KEY"
   ```

4. Specify a chassis cluster control ports to a connectivity association.

   ```
   [edit security macsec]
   user@host# set security macsec cluster-data-port ge-0/0/2 connectivity-association ca2
   user@host# set security macsec cluster-data-port ge-5/0/2 connectivity-association ca2
   ```

Considerations for Configuring MACsec on Control Ports

Control port states affect the integrity of a chassis cluster. Note the following important points:

- Any new MACsec chassis cluster port configurations or modifications to existing MACsec chassis cluster port configurations will require the chassis cluster to be disabled. Once disabled, you can apply the preceding configurations and reenable the chassis cluster.

- By default, chassis clusters synchronize all configurations. Correspondingly, you must monitor that synchronization does not lead to loss of any MACsec configurations. Otherwise, the chassis cluster will break. For example, for nonsymmetric, node-specific MACsec configurations, identical configurations should exist on both ends. That is, each node should contain the same configuration as the other node.

NOTE: The ineligible timer is 5 minutes when MACsec on the chassis cluster control port is enabled on SRX340 and SRX345 devices.

NOTE: Starting with Junos OS Release 15.1X49-D60 and Junos OS Release 17.3R1, the initial hold timer is extended from 30 seconds to 120 seconds in chassis clusters on SRX340 and SRX345 devices.
Configuring MACsec on Control Ports

Follow these steps to configure MACsec on control ports:

1. If the chassis cluster is already up, disable it by using the `set chassis cluster disable` command and reboot both nodes.

2. Configure MACsec on the control port with its attributes as described in the preceding sections “Configuring Static CAK on the Chassis Cluster Control Port” on page 370. Both nodes must be configured independently with identical configurations.

3. Enable the chassis cluster by using `set chassis cluster cluster-id<id>` on both of the nodes. Reboot both nodes.

NOTE: For any change in the MACsec configurations of control ports, the above steps should be repeated.

Considerations for Configuring MACsec on Fabric Ports

Configuring MACsec leads to link state changes that can affect traffic capability of the link. When you configure fabric ports, keep the effective link state in mind. Incorrect MACsec configuration on both ends of the fabric links can move the link to an ineligible state. Note the following key points about configuring fabric links:

- Both ends of the links must be configured simultaneously when the chassis cluster is formed.
- Incorrect configuration can lead to fabric failures and errors in fabric recovery logic.

NOTE: Because of potential link failure scenarios, we recommend that fabric links be configured during formation of the chassis cluster.

Related Documentation
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- macsec on page 440
PART 5

Upgrading or Disabling Chassis Cluster

- Upgrading Both Devices Separately on page 375
- Upgrading Both Devices Using ICU on page 377
- Upgrading Both Devices Using Low-Impact ISSU on page 383
- Disabling Chassis Cluster on page 401
CHAPTER 24

Upgrading Both Devices Separately

- Upgrading Individual Devices in a Chassis Cluster Separately on page 375

Upgrading Individual Devices in a Chassis Cluster Separately

Supported Platforms
SRX Series, vSRX

Devices in a chassis cluster can be upgraded separately one at a time; some models allow one device after the other to be upgraded using failover and an in-service software upgrade (ISSU) to reduce the operational impact of the upgrade.

To upgrade each device in a chassis cluster separately:

1. Load the new image file on node 0.

2. Perform the image upgrade without rebooting the node by entering:

 `user@host> request system software add image_name`

3. Load the new image file on node 1.

4. Repeat Step 2.

5. Reboot both nodes simultaneously.

Related Documentation
- Upgrading Both Devices in a Chassis Cluster Using an ISSU on page 388
- Upgrading Devices in a Chassis Cluster Using ICU on page 377
CHAPTER 25

Upgrading Both Devices Using ICU

- Upgrading Devices in a Chassis Cluster Using ICU on page 377

Upgrading Devices in a Chassis Cluster Using ICU

Supported Platforms
SRX300, SRX320, SRX340, SRX345, SRX550M

- Upgrading Both Devices in a Chassis Cluster Using ICU on page 377
- Upgrading ICU Using a Build Available Locally on a Primary Node in a Chassis Cluster on page 378
- Upgrading ICU Using a Build Available on an FTP Server on page 379
- Aborting an Upgrade in a Chassis Cluster During an ICU on page 380

Upgrading Both Devices in a Chassis Cluster Using ICU

Supported Platforms
SRX300, SRX320, SRX340, SRX345, SRX550M

SRX Series devices in a chassis cluster can be upgraded with a minimal service disruption using In-Band Cluster Upgrade (ICU). The chassis cluster ICU feature allows both devices in a cluster to be upgraded from supported Junos OS versions using a single command. You can enable this feature by executing the `request system software in-service-upgrade image_name` command on the primary node. This command upgrades the Junos OS and reboots both the secondary node and the primary node in turn. During the ICU process, traffic outage is minimal; however, cold synchronization is provided between the two nodes.

For SRX300, SRX320, SRX340, SRX345, and SRX550M devices, the devices in a chassis cluster can be upgraded with a minimal service disruption of approximately 30 seconds using ICU with the no-sync option. The chassis cluster ICU feature allows both devices in a cluster to be upgraded from supported Junos OS versions.

In Junos OS Release 15.1X49-D50 and Junos OS Release 15.1X49-D60, SRX1500 devices supported ICU. Starting in Junos OS Release 15.1X49-D70 onwards, SRX1500 devices support ISSU.

For SRX300, SRX320, SRX340, SRX345, and SRX550M devices, the impact on traffic is as follows:

- Drop in traffic (30 seconds approximately)
Loss of security flow sessions

Before you begin, note the following:

- ICU is available with the no-sync option only for SRX300, SRX320, SRX340, SRX345, and SRX550M devices.
- Before starting ICU, you should ensure that sufficient disk space is available. See “Upgrading ICU Using a Build Available Locally on a Primary Node in a Chassis Cluster” on page 378 and “Upgrading ICU Using a Build Available on an FTP Server” on page 379.
- For SRX300, SRX320, SRX340, SRX345, and SRX550M devices, this feature cannot be used to downgrade to a build earlier than Junos OS 11.2 R2.
 For SRX1500 devices, this feature cannot be used to downgrade to a build earlier than Junos OS 15.1X49-D50.

The upgrade is initiated with the Junos OS build locally available on the primary node of the device or on an FTP server.

NOTE:
- The primary node, RGO, changes to the secondary node after an ICU upgrade.
- During ICU, the chassis cluster redundancy groups are failed over to the primary node to change the cluster to active/passive mode.
- ICU states can be checked from the syslog or with the console/terminal logs.
- ICU requires that both nodes be running a dual-root partitioning scheme. ICU will not continue if it fails to detect dual-root partitioning on either of the nodes. Requirement of the dual-root partitioning is applicable only for SRX300, SRX320, SRX340, SRX345, and SRX550M devices.

NOTE: Dual-root partitioning is not supported on SRX1500 devices. SRX1500 uses solid-state drive (SSD) as secondary storage.

Upgrading ICU Using a Build Available Locally on a Primary Node in a Chassis Cluster

Supported Platforms SRX300, SRX320, SRX340, SRX345, SRX550M

NOTE: Ensure that sufficient disk space is available for the Junos OS package in the /var/tmp location in the secondary node of the cluster.
To upgrade ICU using a build locally available on the primary node of a cluster:

1. Copy the Junos OS package build to the primary node at any location, or mount a network file server folder containing the Junos OS build.

2. Start ICU by entering the following command:

   ```
   user@host> request system software in-service-upgrade image_name no-sync (for SRX300, SRX320, SRX340, SRX345, and SRX550M devices)
   user@host> request system software in-service-upgrade image_name (for SRX1500 devices prior to Junos OS Release 15.1X49-D70)
   ```

Upgrading ICU Using a Build Available on an FTP Server

Supported Platforms
SRX300, SRX320, SRX340, SRX345, SRX550M

NOTE: Ensure that sufficient disk space is available for the Junos OS package in the /var/tmp location in both the primary and the secondary nodes of the cluster.

To upgrade ICU using a build available on an FTP server:

1. Place the Junos OS build on an FTP server.

2. (SRX300, SRX320, SRX340, SRX345, and SRX550M only) Start ICU by entering the following command:

   ```
   user@root> request system software in-service-upgrade <ftp url for junos image> no-sync
   ```

   ```
   user@root> request system software in-service-upgrade ftp://<user>:<password>@<server>:/<path> no-sync
   ```

 This command upgrades the Junos OS and reboots both nodes in turn.

3. (SRX1500 only prior to Junos OS Release 15.1X49-D70) Start ICU by entering the following command:

   ```
   user@root> request system software in-service-upgrade <ftp url for junos image>
   ```

   ```
   user@root> request system software in-service-upgrade ftp://<user>:<password>@<server>:/<path>
   ```

 This command upgrades the Junos OS and reboots both nodes in turn.
NOTE: The upgrade process displays the following warning message to reboot the system:

WARNING: A reboot is required to load this software correctly. Use the request system reboot command when software installation is complete.

This warning message can be ignored because the ICU process automatically reboots both the nodes.

Aborting an Upgrade in a Chassis Cluster During an ICU

Supported Platforms

SRX300, SRX320, SRX340, SRX345, SRX550M

You can abort an ICU at any time by issuing the following command on the primary node:

```plaintext
request system software abort in-service-upgrade
```

NOTE: Issuing an **abort** command during or after the secondary node reboots puts the cluster in an inconsistent state. The secondary node boots up running the new Junos OS build, while the primary continues to run the older Junos OS build.

To recover from the chassis cluster inconsistent state, perform the following actions sequentially on the secondary node:

1. Issue an **abort** command:

   ```plaintext
   request system software abort in-service-upgrade
   ```

2. Roll back the Junos OS build by entering the following command:

   ```plaintext
   request system software rollback node < node-id >
   ```

3. Reboot the secondary node immediately by using the following command:

   ```plaintext
   request system reboot
   ```

NOTE: You must execute the above steps sequentially to complete the recovery process and avoid cluster instability.

Table 37 on page 381 lists the options and their descriptions for the `request system software in-service-upgrade` command.
Table 37: request system software in-service-upgrade Output Fields

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-sync</td>
<td>Disables the flow state from syncing up when the old secondary node has booted with a new Junos OS image.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This option is not available on SRX1500 devices.</td>
</tr>
<tr>
<td>no-tcp-syn-check</td>
<td>Creates a window wherein the TCP SYN check for the incoming packets will be disabled. The default value for the window is 7200 seconds (2 hours).</td>
</tr>
<tr>
<td></td>
<td>NOTE: This option is not available on SRX1500 devices.</td>
</tr>
<tr>
<td>no-validate</td>
<td>Disables the validation of the configuration at the time of the installation. The system behavior is similar to software add.</td>
</tr>
<tr>
<td>unlink</td>
<td>Removes the package from the local media after installation.</td>
</tr>
</tbody>
</table>

NOTE:
- During ICU, if an abort command is executed, ICU will abort only after the current operation finishes. This is required to avoid any inconsistency with the devices.

 For example, if formatting and upgrade of a node is in progress, ICU aborts after this operation finishes.

- After an abort, ICU will try to roll back the build on the nodes if the upgrading nodes step was completed.

Related Documentation
- Verifying a Chassis Cluster Configuration on page 161
CHAPTER 26

Upgrading Both Devices Using Low-Impact ISSU

- Understanding the ISSU Process on Devices in a Chassis Cluster on page 383
- ISSU System Requirements on page 386
- Upgrading Both Devices in a Chassis Cluster Using an ISSU on page 388
- Rolling Back Devices in a Chassis Cluster After an ISSU on page 390
- Enabling an Automatic Chassis Cluster Node Failback After an ISSU on page 391
- Understanding Log Error Messages for Troubleshooting ISSU-Related Problems on page 391
- Troubleshooting Chassis Cluster ISSU-Related Problems on page 397

Understanding the ISSU Process on Devices in a Chassis Cluster

Supported Platforms

SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, SRX5800

In-service software upgrade (ISSU) enables a software upgrade from one Junos OS version to a later Junos OS version with little or no downtime.

The chassis cluster ISSU feature enables both devices in a cluster to be upgraded from supported Junos OS versions with a minimal disruption in traffic and without a disruption in service.

Starting with Junos OS Release 15.1X49-D70, SRX1500 devices support ISSU.

NOTE:

You can use the in-band cluster upgrade (ICU) commands on SRX1500 device to upgrade following Junos OS Releases:

- Junos OS Release 15.1X49-D50 to Junos OS Release 15.1X49-D60
- Junos OS Release 15.1X49-D60 to Junos OS Release 15.1X49-D70.

Starting with Junos OS Release 15.1X49-D80, SRX4100 and SRX4200 devices support ISSU.
NOTE: You can use the in-band cluster upgrade (ICU) commands on SRX4100 and SRX4200 devices to upgrade following Junos OS Releases:

- Junos OS Release 15.1X49-D65 to Junos OS Release 15.1X49-D70
- Junos OS Release 15.1X49-D70 to Junos OS Release 15.1X49-D80.

ISSU provides the following benefits:

- Eliminates network downtime during software image upgrades
- Reduces operating costs, while delivering higher service levels
- Allows fast implementation of new features

NOTE: ISSU has the following limitations:

- ISSU is available only for Junos OS Release 10.4R4 or later.
- ISSU does not support software downgrades.
- If you upgrade from a Junos OS version that supports only IPv4 to a version that supports both IPv4 and IPv6, the IPv4 traffic continue to work during the upgrade process. If you upgrade from a Junos OS version that supports both IPv4 and IPv6 to a version that supports both IPv4 and IPv6, both the IPv4 and IPv6 traffic continue to work during the upgrade process. Junos OS Release 10.2 and later releases support flow-based processing for IPv6 traffic.
- During an ISSU, you cannot bring any PICs online. You cannot perform operations such as commit, restart, or halt.
- During an ISSU, operations like fabric monitoring, control link recovery, and RGX preempt are suspended.
- During an ISSU, you cannot commit any configurations.

NOTE: For details about ISSU support status, see knowledge base article KB17946.

The following process occurs during an ISSU for devices in a chassis cluster. The sequences given below are applicable when RG-0 is node 0 (primary node). Note that you must initiate an ISSU from RG-0 primary. If you initiate the upgrade on node 1 (RG-0 secondary), an error message is displayed.
1. At the beginning of a chassis cluster ISSU, the system automatically fails over all RG-1+ redundancy groups that are not primary on the node from which the ISSU is initiated. This action ensures that all the redundancy groups are active on only the RG-0 primary node.

NOTE: The automatic failover of all RG-1+ redundancy groups is available from Junos OS release 12.1 or later. If you are using Junos OS release 11.4 or earlier, before starting the ISSU, ensure that all the redundancy groups are all active on only the RG-0 primary node.

After the system fails over all RG-1+ redundancy groups, it sets the manual failover bit and changes all RG-1+ primary node priorities to 255, regardless of whether the redundancy group failed over to the RG-0 primary node.

2. The primary node (node 0) validates the device configuration to ensure that it can be committed using the new software version. Checks are made for disk space availability for the `/var` file system on both nodes, unsupported configurations, and unsupported Physical Interface Cards (PICs).

 If the disk space available on either of the Routing Engines is insufficient, the ISSU process fails and returns an error message. However, unsupported PICs do not prevent the ISSU. The software issues a warning to indicate that these PICs will restart during the upgrade. Similarly, an unsupported protocol configuration does not prevent the ISSU. However, the software issues a warning that packet loss might occur for the protocol during the upgrade.

3. When the validation succeeds, the kernel state synchronization daemon (ksyncd) synchronizes the kernel on the secondary node (node 1) with the node 0.

4. Node 1 is upgraded with the new software image. Before being upgraded, the node 1 gets the configuration file from node 0 and validates the configuration to ensure that it can be committed using the new software version. After being upgraded, it is resynchronized with node 0.

5. The chassis cluster process (chassisd) on the node 0 prepares other software processes for the ISSU. When all the processes are ready, chassisd sends a message to the PICs installed in the device.

6. The Packet Forwarding Engine on each Flexible PIC Concentrator (FPC) saves its state and downloads the new software image from node 1. Next, each Packet Forwarding Engine sends a message (unified-ISSU ready) to the chassisd.

7. After receiving the message (unified-ISSU ready) from a Packet Forwarding Engine, the chassisd sends a reboot message to the FPC on which the Packet Forwarding Engine resides. The FPC reboots with the new software image. After the FPC is rebooted, the Packet Forwarding Engine restores the FPC state and a high-speed internal link is established with node 1 running the new software. The chassisd is also reestablished with node 0.

8. After all Packet Forwarding Engines have sent a ready message using the chassisd on node 0, other software processes are prepared for a node switchover. The system is ready for a switchover at this point.
9. Node switchover occurs and node 1 becomes the new primary node (hitherto secondary node 1).

10. The new secondary node (hitherto primary node 0) is now upgraded to the new software image.

When both nodes are successfully upgraded, the ISSU is complete.

NOTE: When upgrading a version cluster that does not support encryption to a version that supports encryption, upgrade the first node to the new version. Without the encryption configured and enabled, two nodes with different versions can still communicate with each other and service is not broken. After upgrading the first node, upgrade the second node to the new version. Users can decide whether to turn on the encryption feature after completing the upgrade. Encryption must be deactivated before downgrading to a version that does not support encryption. This ensures that communication between an encryption-enabled version node and a downgraded node does not break, because both are no longer encrypted.

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D80</td>
<td>Starting with Junos OS Release 15.1X49-D80, SRX4100 and SRX4200 devices support ISSU.</td>
</tr>
<tr>
<td>15.1X49-D70</td>
<td>Starting with Junos OS Release 15.1X49-D70, SRX1500 devices support ISSU.</td>
</tr>
</tbody>
</table>

Related Documentation

- Understanding Log Error Messages for Troubleshooting ISSU-Related Problems on page 391
- ISSU System Requirements on page 386
- Upgrading Both Devices in a Chassis Cluster Using an ISSU on page 388
- Troubleshooting Chassis Cluster ISSU-Related Problems on page 397

ISSU System Requirements

Supported Platforms

SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, SRX5800

You can use ISSU to upgrade from an ISSU-capable software release to a later release.

To perform an ISSU, your device must be running a Junos OS release that supports ISSU for the specific platform. See Table 38 on page 387 for platform support.
Table 38: ISSU Platform Support

<table>
<thead>
<tr>
<th>Device</th>
<th>Junos OS Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX5800</td>
<td>10.4R4 or later</td>
</tr>
<tr>
<td>SRX5600</td>
<td>10.4R4 or later</td>
</tr>
<tr>
<td>SRX5400</td>
<td>12.1X46-D20 or later</td>
</tr>
<tr>
<td>SRX1500</td>
<td>15.1X49-D70 or later</td>
</tr>
<tr>
<td>SRX4100</td>
<td>15.1X49-D80 or later</td>
</tr>
<tr>
<td>SRX4200</td>
<td>15.1X49-D80 or later</td>
</tr>
</tbody>
</table>

NOTE: For additional details on ISSU support and limitations, see ISSU/ICU Upgrade Limitations on SRX Series Devices.

Note the following limitations related to an ISSU:

- The ISSU process is aborted if the Junos OS version specified for installation is a version earlier than the one currently running on the device.
- The ISSU process is aborted if the specified upgrade conflicts with the current configuration, the components supported, and so forth.
- ISSU does not support the extension application packages developed using the Junos OS SDK.
- ISSU does not support version downgrading on all supported SRX Series devices.
- ISSU occasionally fails under heavy CPU load.

NOTE: To downgrade from an ISSU-capable release to an earlier release (ISSU-capable or not), use the `request system software add` command. Unlike an upgrade using the ISSU process, a downgrade using the `request system software add` command might cause network disruptions and loss of data.

We strongly recommend that you perform ISSU under the following conditions:

- When the devices are operating in chassis cluster mode
- When both the primary and secondary nodes are healthy
- During system maintenance period
- During the lowest possible traffic period
- When the Routing Engine CPU usage is less than 40 percent
In cases where ISSU is not supported or recommended, while still downtime during the system upgrade must be minimized, the minimal downtime procedure can be used, see knowledge base article KB17947.

Related Documentation
- Upgrading Both Devices in a Chassis Cluster Using an ISSU on page 388
- Troubleshooting Chassis Cluster ISSU-Related Problems on page 397
- Understanding the ISSU Process on Devices in a Chassis Cluster on page 383
- Understanding Log Error Messages for Troubleshooting ISSU-Related Problems on page 391

Upgrading Both Devices in a Chassis Cluster Using an ISSU

Supported Platforms

SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, SRX5800

The chassis cluster ISSU feature enables both devices in a cluster to be upgraded from supported Junos OS versions with a traffic impact similar to that of redundancy group failovers.

Before you begin the ISSU for upgrading both the devices, note the following guidelines:

- Back up the software using the `request system snapshot` command on each Routing Engine to back up the system software to the device’s hard disk.
- If you are using Junos OS Release 11.4 or earlier, before starting the ISSU, set the failover for all redundancy groups so that they are all active on only one node (primary). See “Initiating a Chassis Cluster Manual Redundancy Group Failover” on page 236.
- If you are using Junos OS Release 12.1 or later, Junos OS automatically fails over all RGs to the RG0 primary.
- We recommend that you enable graceful restart for routing protocols before you start an ISSU.

NOTE: On all supported SRX Series devices, the first recommended ISSU from release is Junos OS Release 10.4R4.

Starting with Junos OS Release 15.1X49-D70, SRX1500 devices support ISSU.

Starting with Junos OS Release 15.1X49-D80, SRX4100 and SRX4200 devices support ISSU.
To perform an ISSU from the CLI:

1. Download the software package from the Juniper Networks Support website:
 http://www.juniper.net/support/downloads/

2. Copy the package on primary node of the cluster. We recommend that you copy the package to the `/var/tmp` directory, which is a large file system on the hard disk. Note that the node from where you initiate the ISSU must have the software image.

   ```shell
   user@host> file copy ftp://username:prompt@ftp.hostname.net/filename /var/tmp/filename
   ```

3. Verify the current software version running on both nodes by issuing the `show version` command on the primary node.

4. Start the ISSU from the node that is primary for all the redundancy groups by entering the following command:

   ```shell
   user@host> request system software in-service-upgrade image-name-with-full-path reboot
   ```

 NOTE: For SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, and SRX5800 devices, you must include `reboot` in the command. If `reboot` is not included, the commit fails.

   ```shell
   user@host> request system software in-service-upgrade image-name-with-full-path reboot unlink
   ```

 NOTE: For SRX1500, SRX4100, and SRX4200 devices, you can optionally remove the original image file by including `unlink` in the command.

 Wait for both nodes to complete the upgrade (After which you are logged out of the device).

5. Wait a few minutes, and then log in to the device again. Verify by using the `show version` command that both devices in the cluster are running the new Junos OS release.

6. Verify that all policies, zones, redundancy groups, and other real-time objects (RTOs) return to their correct states.

7. Make node 0 the primary node again by issuing the `request chassis cluster failover node node-number redundancy-group group-number` command.
NOTE: If you want redundancy groups to automatically return to node 0 as the primary after the ISSU is complete, you must set the redundancy group priority such that node 0 is primary and enable the preempt option. Note that this method works for all redundancy groups except redundancy group 0. You must manually set the failover for redundancy group 0.

To set the redundancy group priority and enable the preempt option, see “Example: Configuring Chassis Cluster Redundancy Groups” on page 123.

To manually set the failover for a redundancy group, see “Initiating a Chassis Cluster Manual Redundancy Group Failover” on page 236.

NOTE: During the upgrade, both devices might experience redundancy group failovers, but traffic is not disrupted. Each device validates the package and checks version compatibility before beginning the upgrade. If the system finds that the new package version is not compatible with the currently installed version, the device refuses the upgrade or prompts you to take corrective action. Sometimes a single feature is not compatible, in which case, the upgrade software prompts you to either abort the upgrade or turn off the feature before beginning the upgrade.

This feature is available through the CLI. See request system software in-service-upgrade (Maintenance).

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1X49-D80</td>
<td>Starting with Junos OS Release 15.1X49-D80, SRX4100 and SRX4200 devices support ISSU.</td>
</tr>
<tr>
<td>15.1X49-D70</td>
<td>Starting with Junos OS Release 15.1X49-D70, SRX1500 devices support ISSU.</td>
</tr>
</tbody>
</table>

Related Documentation

- Troubleshooting Chassis Cluster ISSU-Related Problems on page 397
- ISSU System Requirements on page 386
- In-Service Hardware Upgrade for SRX5K-RE-1800X4 and SRX5K-SCBE in a Chassis Cluster
- Understanding Log Error Messages for Troubleshooting ISSU-Related Problems on page 391
- Understanding the ISSU Process on Devices in a Chassis Cluster on page 383

Rolling Back Devices in a Chassis Cluster After an ISSU

Supported Platforms
SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, SRX5800
If an ISSU fails to complete and only one device in the cluster is upgraded, you can roll back to the previous configuration on the upgraded device alone by issuing one of the following commands on the upgraded device:

- `request chassis cluster in-service-upgrade abort`
- `request system software rollback node node-id reboot`
- `request system reboot`

Related Documentation

- Upgrading Both Devices in a Chassis Cluster Using an ISSU on page 388
- Troubleshooting Chassis Cluster ISSU-Related Problems on page 397
- ISSU System Requirements on page 386
- Understanding the ISSU Process on Devices in a Chassis Cluster on page 383
- Understanding Log Error Messages for Troubleshooting ISSU-Related Problems on page 391

Enabling an Automatic Chassis Cluster Node Failback After an ISSU

Supported Platforms
SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, SRX5800

If you want redundancy groups to automatically return to node 0 as the primary after the an in-service software upgrade (ISSU), you must set the redundancy group priority such that node 0 is primary and enable the `preempt` option. Note that this method works for all redundancy groups except redundancy group 0. You must manually set the failover for a redundancy group 0. To set the redundancy group priority and enable the `preempt` option, see “Example: Configuring Chassis Cluster Redundancy Groups” on page 123. To manually set the failover for a redundancy group, see “Initiating a Chassis Cluster Manual Redundancy Group Failover” on page 236.

NOTE: To upgrade node 0 and make it available in the chassis cluster, manually reboot node 0. Node 0 does not reboot automatically.

Related Documentation

- Upgrading Both Devices in a Chassis Cluster Using an ISSU on page 388
- Troubleshooting Chassis Cluster ISSU-Related Problems on page 397
- ISSU System Requirements on page 386
- Understanding the ISSU Process on Devices in a Chassis Cluster on page 383
- Understanding Log Error Messages for Troubleshooting ISSU-Related Problems on page 391

Understanding Log Error Messages for Troubleshooting ISSU-Related Problems

Supported Platforms
SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, SRX5800, vSRX
The following problems might occur during an ISSU upgrade. You can identify the errors by using the details in the logs. You can also see the details of the error messages in the System Log Explorer.

- **Chassisd Process Errors** on page 392
- **Kernel State Synchronization** on page 392
- **Installation-Related Errors** on page 392
- **ISSU Support-Related Errors** on page 393
- **Redundancy Group Failover Errors** on page 393
- **Initial Validation Checks Fail** on page 393
- **Understanding Common Error Handling for ISSU** on page 394

Chassisd Process Errors

Problem **Description:** Errors related to chassisd.

Solution Use the error messages to understand the issues related to chassisd.

When ISSU starts, a request is sent to chassisd to check whether there are any problems related to the ISSU from a chassis perspective. If there is a problem, a log message is created.

Kernel State Synchronization

Problem **Description:** Errors related to ksyncd.

Solution Use the following error messages to understand the issues related to ksyncd:

Failed to get kernel-replication error information from Standby Routing Engine.

Failed at line 4414 in mgd_package_issu.

ISSU checks whether there are any ksyncd errors on the secondary node (node 1) and displays the error message if there are any problems and aborts the upgrade.

Installation-Related Errors

Problem **Description:** The install image file does not exist or the remote site is inaccessible.

Solution Use the following error messages to understand the installation-related problems:

```
error: File does not exist: /var/tmp/junos-srx5000-11.4X3.2-domest
error: Couldn't retrieve package /var/tmp/junos-srx5000-11.4X3.2-domest
```
ISSU downloads the install image as specified in the ISSU command as an argument. The image file can be a local file or located at a remote site. If the file does not exist or the remote site is inaccessible, an error is reported.

ISSU Support-Related Errors

Problem Description: Installation failure occurs because of unsupported software and unsupported feature configuration.

Solution Use the following error messages to understand the compatibility-related problems:

WARNING: Current configuration not compatible with /var/tmp/junos-srx5000-11.4X3.2-domestic.tgz
Exiting in-service-upgrade window
Exiting in-service-upgrade window

Redundancy Group Failover Errors

Problem Description: Problem with automatic redundancy group (RG) failure.

Solution Use the following error messages to understand the problem:

failover all RG 1+ groups to node 0
error: Command failed. None of the redundancy-groups has been failed over.
Some redundancy-groups on node1 are already in manual failover mode.
Please execute 'failover reset all' first..

Initial Validation Checks Fail

Problem Description: The initial validation checks fail.

Solution The validation checks fail if the image is not present or if the image file is corrupt. The following error messages are displayed when initial validation checks fail when the image is not present and the ISSU is aborted:

When Image Is Not Present

user@host> ...0120914_srx_12q1_major2.2-539764-domestic.tgz reboot
Chassis ISSU Started
Chassis ISSU Started
ISSU: Validating Image
Initiating in-service-upgrade
Initiating in-service-upgrade
Fetching package...
error: File does not exist:
/var/tmp/junos-srx1k3k-12.1I20120914_srx_12q1_major2.2-539764-domestic.tgz
error: Couldn't retrieve package
When Image File Is Corrupted

If the image file is corrupted, the following output displays:

```
user@host> ...junos-srx1k3k-11.4X9-domestic.tgz_1 reboot
Chassis ISSU Started
node1:---------------------------------------------------------------------
Chassis ISSU Started
ISSU: Validating Image
Initiating in-service-upgrade
node1:---------------------------------------------------------------------
Initiating in-service-upgrade
ERROR: Cannot use /var/tmp/junos-srx1k3k-11.4X9-domestic.tgz_1:
gzip: stdin: invalid compressed data--format violated
tar: Child returned status 1
tar: Error exit delayed from previous errors
ERROR: It may have been corrupted during download.
ERROR: Please try again, making sure to use a binary transfer.
Exiting in-service-upgrade window
node1:---------------------------------------------------------------------
Exiting in-service-upgrade window
Chassis ISSU Aborted
Chassis ISSU Aborted
node1:---------------------------------------------------------------------
Chassis ISSU Aborted
ISSU: IDLE
ISSU aborted; exiting ISSU window.
{primary:node0}
```

The primary node validates the device configuration to ensure that it can be committed using the new software version. If anything goes wrong, the ISSU aborts and error messages are displayed.

Understanding Common Error Handling for ISSU

Problem **Description:** You might encounter some problems in the course of an ISSU. This section provides details on how to handle them.
Solution Any errors encountered during an ISSU result in the creation of log messages, and ISSU continues to function without impact to traffic. If reverting to previous versions is required, the event is either logged or the ISSU is halted, so as not to create any mismatched versions on both nodes of the chassis cluster. Table 39 on page 395 provides some of the common error conditions and the workarounds for them. The sample messages used in the Table 39 on page 395 are from the SRX1500 device and are also applicable to all supported SRX Series devices.

Table 39: ISSU-Related Errors and Solutions

<table>
<thead>
<tr>
<th>Error Conditions</th>
<th>Solutions</th>
</tr>
</thead>
</table>
| Attempt to initiate an ISSU when previous instance of an ISSU is already in progress | The following message is displayed:
 warning: ISSU in progress
 You can abort the current ISSU process, and initiate the ISSU again using the request chassis cluster in-service-upgrade abort command. |
| Reboot failure on the secondary node | No service downtime occurs, because the primary node continues to provide required services. Detailed console messages are displayed requesting that you manually clear existing ISSU states and restore the chassis cluster.
 error: [Oct 6 12:30:16]: Reboot secondary node failed (error-code: 4.1)
 error: [Oct 6 12:30:16]: ISSU Aborted! Backup node maybe in inconsistent state, Please restore backup node
 [Oct 6 12:30:16]: ISSU aborted. But, both nodes are in ISSU window.
 Please do the following:
 1. Rollback the node with the newer image using rollback command
 Note: use the 'node' option in the rollback command
 otherwise, images on both nodes will be rolled back
 2. Make sure that both nodes (will) have the same image
 3. Ensure the node with older image is primary for all RGS
 4. Abort ISSU on both nodes
 5. Reboot the rolled back node |
Table 39: ISSU-Related Errors and Solutions (continued)

<table>
<thead>
<tr>
<th>Error Conditions</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary node failed to complete the cold synchronization</td>
<td>The primary node times out if the secondary node fails to complete the cold synchronization. Detailed console messages are displayed that you manually clear existing ISSU states and restore the chassis cluster. No service downtime occurs in this scenario.</td>
</tr>
<tr>
<td></td>
<td>Note: [Oct 3 14:00:46]: timeout waiting for secondary node node1 to sync (error-code: 6.1)</td>
</tr>
<tr>
<td></td>
<td>Chassis control process started, pid 36707</td>
</tr>
<tr>
<td></td>
<td>error: [Oct 3 14:00:46]: ISSU Aborted! Backup node has been upgraded, Please restore backup node</td>
</tr>
<tr>
<td></td>
<td>[Oct 3 14:00:46]: ISSU aborted. But, both nodes are in ISSU window. Please do the following:</td>
</tr>
<tr>
<td></td>
<td>1. Rollback the node with the newer image using rollback command</td>
</tr>
<tr>
<td></td>
<td>Note: use the 'node' option in the rollback command otherwise, images on both nodes will be rolled back</td>
</tr>
<tr>
<td></td>
<td>2. Make sure that both nodes (will) have the same image</td>
</tr>
<tr>
<td></td>
<td>3. Ensure the node with older image is primary for all RGs</td>
</tr>
<tr>
<td></td>
<td>4. Abort ISSU on both nodes</td>
</tr>
<tr>
<td></td>
<td>5. Reboot the rolled back node</td>
</tr>
</tbody>
</table>

Failover of newly upgraded secondary failed	No service downtime occurs, because the primary node continues to provide required services. Detailed console messages are displayed requesting that you manually clear existing ISSU states and restore the chassis cluster.
	[Aug 27 15:28:17]: Failing over all redundancy-groups to node0 ISSU: Preparing for Switchover
	error: remote rgl priority zero, abort failover.
	[Aug 27 15:28:17]: failover all RGs to node node0 failed (error-code: 7.1)
	error: [Aug 27 15:28:17]: ISSU Aborted!
	[Aug 27 15:28:17]: ISSU aborted. But, both nodes are in ISSU window. Please do the following:
	1. Rollback the node with the newer image using rollback command
	Note: use the 'node' option in the rollback command otherwise, images on both nodes will be rolled back
	2. Make sure that both nodes (will) have the same image
	3. Ensure the node with older image is primary for all RGs
	4. Abort ISSU on both nodes
	5. Reboot the rolled back node {primary:node1}

| Upgrade failure on primary | No service downtime occurs, because the secondary node fails over as primary and continues to provide required services. |
Table 39: ISSU-Related Errors and Solutions (continued)

<table>
<thead>
<tr>
<th>Error Conditions</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reboot failure on primary node</td>
<td>Before the reboot of the primary node, devices being out of the ISSU setup, no ISSU-related error messages are displayed. The following reboot error message is displayed if any other failure is detected:</td>
</tr>
<tr>
<td></td>
<td>Reboot failure on primary node, devices will be out of ISSU setup and no primary node error messages will be displayed.</td>
</tr>
<tr>
<td></td>
<td>Primary node</td>
</tr>
</tbody>
</table>

Related Documentation

- Troubleshooting Chassis Cluster ISSU-Related Problems on page 397
- Upgrading Both Devices in a Chassis Cluster Using an ISSU on page 388
- ISSU System Requirements on page 386
- Understanding the ISSU Process on Devices in a Chassis Cluster on page 383

Troubleshooting Chassis Cluster ISSU-Related Problems

Supported Platforms

SRX1500, SRX4100, SRX4200, SRX5400, SRX5600, SRX5800

This topic includes the following sections:

- Viewing ISSU Progress on page 397
- Stopping ISSU Process if it Halts During an Upgrade on page 398
- Recovering the Node in Case of a Failed ISSU on page 398

Viewing ISSU Progress

Problem Description: Rather than wait for an ISSU failure, you can display the progress of the ISSU as it occurs, noting any message indicating that the ISSU was unsuccessful. Providing such messages to JTAC can help with resolving the issue.

Solution

After starting an ISSU, issue the `show chassis cluster information issu` command. Output similar to the following is displayed indicating the progress of the ISSU for all Services Processing Units (SPUs).

```
Note: Any management session to secondary node will be disconnected.
Shutdown NOW!
[pid 2480]
ISSU: Backup RE Prepare Done
Waiting for node1 to reboot.
Current time: Tue Apr 22 14:37:32 2014
Max. time to complete: 15min 0sec.
Note: For real time ISSU status, open a new management session and run
<show chassis cluster information issu> for detail information
```
nodel booted up.
Waiting for nodel to become secondary
Current time: Tue Apr 22 14:40:32 2014
Max. time to complete: 60min 0sec.
Note: For real time ISSU status, open a new management session and run
<show chassis cluster information issu> for detail information
nodel became secondary.
Waiting for nodel to be ready for failover
ISSU: Preparing Daemons
Current time: Tue Apr 22 14:41:27 2014
Max. time to complete: 60min 0sec.
Note: For real time ISSU status, open a new management session and run
<show chassis cluster information issu> for detail information
Secondary nodel ready for failover.
Installing package
'/var/tmp/junos-srx5000-12.1I20140421_srx_12q1_x47.0-643920-domestic.tgz' ...
Verified SHA1 checksum of issu-indb.tgz
Verified junos-boot-srx5000-12.1I20140421_srx_12q1_x47.0-643920.tgz signed by
PackageDevelopment_12_1_0
Verified junos-srx5000-12.1I20140421_srx_12q1_x47.0-643920-domestic signed by
PackageDevelopment_12_1_0

Stopping ISSU Process if it Halts During an Upgrade

Problem Description: The ISSU process halts in the middle of an upgrade.

Solution
If the ISSU fails to complete and only one device in the cluster is upgraded, you can roll
back to the previous configuration on the upgraded device alone by issuing one of the
following commands on the upgraded device:

- request chassis cluster in-service-upgrade abort to abort the ISSU on both nodes.

- request system software rollback node node-id reboot to roll back the image.

- request system reboot to reboot the rolled back node.

Recovering the Node in Case of a Failed ISSU

Problem Description: The ISSU procedure stops progressing.

Solution
Open a new session on the primary device and issue the request chassis cluster
in-service-upgrade abort command.

This step aborts an in-progress ISSU. This command must be issued from a session
other than the one on which you issued the request system in-service-upgrade command
that launched the ISSU. If the node is being upgraded, this command cancels the upgrade.
The command is also helpful in recovering the node in case of a failed ISSU.

When an ISSU encounters an unexpected situation that necessitates an abort, the system
message provides you with detailed information about when and why the upgrade
stopped along with recommendations for the next steps to take.
For example, the following message is issued when a node fails to become RG-0 secondary when it boots up:

Rebooting Secondary Node
Shutdown NOW!
[pid 2120]
ISSU: Backup RE Prepare Done
Waiting for node1 to reboot.
node1 booted up.
Waiting for node1 to become secondary
error: wait for node1 to become secondary failed (error-code: 5.1)
ISSU aborted. But, both nodes are in ISSU window.
Please do the following:
1. Log on to the upgraded node.
2. Rollback the image using rollback command with node option
Note: Not using the 'node' option might cause the images on both nodes to be rolled back
3. Make sure that both nodes (will) have the same image
4. Ensure the node with older image is primary for all RGs
5. Abort ISSU on both nodes
6. Reboot the rolled back node
{primary:node0}

NOTE: If you attempt to upgrade a device pair running a Junos OS release earlier than Release 9.6, ISSU fails without changing anything on either device in the cluster. Devices running Junos OS releases earlier than Release 9.6 must be upgraded separately using individual device upgrade procedures.

If the secondary device experiences a power-off condition before it boots up using the new image specified when the ISSU was initiated, the newly upgraded device will still be waiting to end the ISSU after power is restored. To end the ISSU, issue the request chassis cluster in-service-upgrade abort command.

Related Documentation
• Understanding Log Error Messages for Troubleshooting ISSU-Related Problems on page 391
• Troubleshooting Chassis Cluster ISSU-Related Problems on page 397
• Understanding the ISSU Process on Devices in a Chassis Cluster on page 383
Disabling Chassis Cluster

- Disabling Chassis Cluster on page 401

Disabling Chassis Cluster

Supported Platforms
SRX Series, vSRX

If you want to operate the SRX Series device back as a standalone device or to remove a node from a chassis cluster, you must disable the chassis cluster.

To disable chassis cluster, enter the following command:

{primary:node1}

user@host> set chassis cluster disable reboot

Successfully disabled chassis cluster. Going to reboot now.

After the system reboots, the chassis cluster is disabled.

NOTE: After the chassis cluster is disabled using this CLI command, you do not have a similar CLI option to enable it back.

You can also use the below CLI commands to disable chassis cluster:

- To disable cluster on node 0:

 user@host> set chassis cluster cluster-id 0 node 0 reboot

- To disable cluster on node 1:

 user@host> set chassis cluster cluster-id 0 node 1 reboot

NOTE: Setting cluster-id to zero disables clustering on a device.

Related Documentation

- Upgrading Individual Devices in a Chassis Cluster Separately on page 375
- Upgrading Devices in a Chassis Cluster Using ICU on page 377
PART 6

Configuration Statements and Operational Commands

- Configuration Statements on page 405
- Operational Commands on page 477
CHAPTER 28

Configuration Statements

- apply-groups (Chassis Cluster) on page 407
- arp-throttle on page 408
- cak on page 409
- ckn on page 410
- cluster (Chassis) on page 411
- configuration-synchronize (Chassis Cluster) on page 413
- connectivity-association on page 414
- connectivity-association (MACsec Interfaces) on page 415
- control-link-recovery on page 416
- control-ports on page 417
- device-count (Chassis Cluster) on page 418
- exclude-protocol on page 419
- ethernet (Chassis Cluster) on page 420
- fabric-options on page 421
- gigether-options (Chassis Cluster) on page 422
- global-threshold on page 424
- global-weight on page 425
- gratuitous-arp-count on page 426
- heartbeat-interval on page 427
- heartbeat-threshold on page 428
- hold-down-interval on page 429
- include-sci on page 430
- interface (Chassis Cluster) on page 431
- interfaces (MACsec) on page 432
- interface-monitor on page 433
- internal (Security IPsec) on page 434
- ip-monitoring on page 436
- key-server-priority (MACsec) on page 437
- lACP (Interfaces) on page 438
- link-protection (Chassis Cluster) on page 439
- macsec on page 440
- member-interfaces on page 441
- mka on page 442
- must-secure on page 443
- network-management on page 444
- no-encryption (MACsec) on page 445
- node (Chassis Cluster) on page 446
- node (Chassis Cluster Redundancy Group) on page 447
- ntp on page 448
- ntp threshold on page 449
- offset on page 451
- preempt (Chassis Cluster) on page 452
- pre-shared-key on page 453
- priority (Chassis Cluster) on page 454
- redundancy-group (Chassis Cluster) on page 455
- redundancy-interface-process on page 457
- redundant-ether-options on page 458
- redundant-parent (Interfaces) on page 459
- redundant-pseudo-interface-options on page 460
- replay-protect on page 461
- replay-window-size on page 462
- RETH (Interfaces) on page 464
- reth-count (Chassis Cluster) on page 469
- retry-count (Chassis Cluster) on page 470
- retry-interval (Chassis Cluster) on page 471
- route-active-on on page 471
- security-mode on page 472
- traceoptions (Chassis Cluster) on page 473
- transmit-interval (MACsec) on page 475
- weight on page 476
apply-groups (Chassis Cluster)

Supported Platforms
SRX Series, vSRX

Syntax
`apply-groups [node]`

Hierarchy Level
`[edit chassis cluster]`

Release Information
Statement introduced in Junos OS Release 9.0.

Description
Apply node-specific parameters to each node in a chassis cluster.

Options
$node$ — Each node (node0 or node1) in a chassis cluster.

Required Privilege Level
- interface — To view this statement in the configuration.
- interface-control — To add this statement to the configuration.

Related Documentation
- [cluster (Chassis) on page 411](#)
arp-throttle

Supported Platforms
SRX5400, SRX5600, SRX5800

Syntax
next-hop {
 arp-throttle seconds;
}

Hierarchy Level
[edit forwarding-options next-hop arp-throttle seconds]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60.

Description
Define the length of time (in seconds) for Address Resolution Protocol (ARP) request throttling. Set a greater time interval for the Routing Engine to process the request more slowly and thereby work more efficiently. For example, if a large number of hosts causes numerous ARP requests, Routing Engine utilization is reduced.

Options
seconds—Number of seconds the Routing Engine waits before receiving and processing an ARP request.
Range: 10 through 100 seconds
Default: 10 seconds

Required Privilege Level
security—To view this statement in the configuration.
security-control—To add this statement to the configuration.

Related Documentation
- cluster (Chassis) on page 411
cak

Supported Platforms
SRX340, SRX345

Syntax
cak hexadecimal-number;

Hierarchy Level
[edit security macsec connectivity-association pre-shared-key]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Specifies the connectivity association key (CAK) for a pre-shared key.

A pre-shared key includes a connectivity association key name (CKN) and a CAK. A pre-shared key is exchanged between two devices at each end of a point-to-point link to enable MACsec using dynamic security keys. The MACsec Key Agreement (MKA) protocol is enabled once the pre-shared keys are successfully exchanged. The pre-shared key—the CKN and CAK—must match on both ends of a link.

Default
No CAK exists, by default.

Options
hexadecimal-number — The key name, in hexadecimal format.

The key name is 32 hexadecimal characters in length. If you enter a key name that is less than 32 characters long, the remaining characters are set to 0.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
ckn

Supported Platforms
SRX340, SRX345

Syntax
`ckn hexadecimal-number;`

Hierarchy Level
[edit security macsec connectivity-association pre-shared-key]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Specifies the connectivity association key name (CKN) for a pre-shared key.

A pre-shared key includes a CKN and a connectivity association key (CAK). A pre-shared key is exchanged between two devices at each end of a point-to-point link to enable MACsec using dynamic security keys. The MACsec Key Agreement (MKA) protocol is enabled once the pre-shared keys are successfully exchanged. The pre-shared key—the CKN and CAK—must match on both ends of a link.

Default
No CKN exists, by default.

Options
`hexadecimal-number` — The key name, in hexadecimal format.

The key name is 32 hexadecimal characters in length. If you enter a key name that is less than 32 characters long, the remaining characters are set to 0.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
cluster (Chassis)

Supported Platforms
SRX Series, vSRX

Syntax
```bash
cluster {
  configuration-synchronize {
    no-secondary-bootup-auto;
  }
  control-link-recovery;
  heartbeat-interval milliseconds;
  heartbeat-threshold number;
  network-management {
    cluster-master;
  }
  redundancy-group group-number {
    gratuitous-arp-count number;
    hold-down-interval number;
    interface-monitor interface-name {
      weight number;
    }
    ip-monitoring {
      family {
        inet {
          ipv4-address {
            interface {
              logical-interface-name;
              secondary-ip-address ip-address;
            }
            weight number;
          }
        }
      }
      global-threshold number;
      global-weight number;
      retry-count number;
      retry-interval seconds;
    }
    node (0|1) {
      priority number;
    }
    preempt;
  }
  reth-count number;
  traceoptions {
    file {
      filename;
      files number;
      match regular-expression;
      (world-readable | no-world-readable);
      size maximum-file-size;
    }
    flag flag;
    level {
      (alert | all | critical | debug | emergency | error | info | notice | warning);
    }
```

Copyright © 2017, Juniper Networks, Inc.
Hierarchy Level [edit chassis]

Release Information Statement introduced in Junos OS Release 9.0.

Description Configure a chassis cluster.

Options The remaining statements are explained separately. See CLI Explorer.

Required Privilege
Level interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation • ip-monitoring on page 436
configuration-synchronize (Chassis Cluster)

Supported Platforms SRX Series, vSRX

Syntax

```
configuration-synchronize {
   no-secondary-bootup-auto;
}
```

Hierarchy Level [edit chassis cluster]

Release Information Statement introduced in Junos OS Release 12.1X47-D10.

Description Disables the automatic chassis cluster synchronization between the primary and secondary nodes. To reenable automatic chassis cluster synchronization, use the `delete chassis cluster configuration-synchronize no-secondary-bootup-auto` command in configuration mode.

Options

- `no-secondary-bootup-auto`—Disable the automatic chassis cluster synchronization between the primary and secondary nodes.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes on page 275
- request chassis cluster configuration-synchronize on page 487
- show chassis cluster information configuration-synchronization on page 519
connectivity-association

Supported Platforms
SRX340, SRX345

Syntax

```
connectivity-association connectivity-association-name;
exclude-protocol protocol-name;
include-sci;
mka {
  must-secure;
  key-server-priority priority-number;
  transmit-interval interval;
}
no-encryption;
offset (0|30|50);
pre-shared-key {
  cak hexadecimal-number;
  ckn hexadecimal-number;
}
replay-protect {
  replay-window-size number-of-packets;
}
security-mode security-mode;
```

Hierarchy Level
[edit security macsec]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Create or configure a MACsec connectivity association.

A connectivity association is not applying MACsec to traffic until it is associated with an interface. MACsec connectivity associations are associated with interfaces using the `interfaces` statement in the `[edit security macsec]` hierarchy.

Required Privilege Level
- admin—To view this statement in the configuration.
- admin-control—To add this statement to the configuration.

Related Documentation
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
connectivity-association (MACsec Interfaces)

Supported Platforms
SRX340, SRX345

Syntax
`connectivity-association connectivity-association-name;`

Hierarchy Level
[edit security macsec cluster-control-port <idx>]
[edit security macsec cluster-data-port interface]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Applies a connectivity association to an interface, which enables Media Access Control Security (MACsec) on that interface.

Default
No connectivity associations are associated with any interfaces.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
control-link-recovery

Supported Platforms
SRX Series, vSRX

Syntax
control-link-recovery;

Hierarchy Level
[edit chassis cluster]

Release Information
Statement introduced in Junos OS Release 9.5.

Description
Enable control link recovery to be done automatically by the system. After the control link recovers, the system checks whether it receives at least 30 consecutive heartbeats on the control link. This is to ensure that the control link is not flapping and is perfectly healthy. Once this criterion is met, the system issues an automatic reboot on the node that was disabled when the control link failed. When the disabled node reboots, the node rejoins the cluster. There is no need for any manual intervention.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- interface (Chassis Cluster) on page 431
control-ports

Supported Platforms SRX5600, SRX5800

Syntax
```plaintext
fpc slot-number {
  offline;
  pic slot-number {
    aggregate-ports;
    framing {
      (e1 | e3 | sdh | sonet | t1 | t3);
    }
    max-queues-per-interface (4 | 8);
    mlfr-uni-nni-bundles number;
    no-multi-rate;
    port slot-number {
      framing (e1 | e3 | sdh | sonet | t1 | t3);
      speed (oc12-stm4 | oc3-stm1 | oc48-stm16);
    }
    q-pic-large-buffer (large-scale | small-scale);
    services-offload {
      low-latency;
      per-session-statistics;
    }
    shdsl {
      pic-mode (1-port-atm | 2-port-atm | 4-port-atm | efm);
    }
    sparse-dlcis;
    traffic-manager {
      egress-shaping-overhead number;
      ingress-shaping-overhead number;
      mode (egress-only | ingress-and-egress);
    }
    tunnel-queuing;
  }
}
```

Hierarchy Level [edit chassis cluster]

Description Enable the specific control port of the Services Processing Card (SPC) for use as a control link for the chassis cluster. By default, all control ports are disabled. User needs to configure a minimum of one control port per chassis of the cluster. If user configures port 0 only, the Juniper Services Redundancy Protocol process (jsrpd) does not send control heartbeats on control link 1 and the counters it sends will show zeroes.

Options
- `fpc slot-number` —Flexible PIC Concentrator (FPC) slot number.
NOTE: FPC slot range depends on platform. The maximum range of 0 through 23 applies to SRX5800 devices; for SRX5600 devices, the only applicable range is 0 through 11; for SRX5400 devices, the applicable slot range is 0 through 5.

- **port port-number** — Port number on which to configure the control port.

Required Privilege Level
- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

Related Documentation
- **cluster (Chassis) on page 411**

device-count (Chassis Cluster)

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>SRX Series, vSRX</th>
</tr>
</thead>
</table>

Syntax

device-count number;

Hierarchy Level

- [edit chassis aggregated-devices ethernet]
- [edit chassis aggregated-devices sonnet]

Release Information

Statement introduced in Junos OS Release 10.2.

Description

Configure the number of aggregated logical devices.

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

Related Documentation

- **cluster (Chassis) on page 411**
- **Example: Configuring Aggregated Ethernet Device with LAG and LACP (CLI Procedure)**
exclude-protocol

Supported Platforms SRX340, SRX345

Syntax exclude-protocol protocol-name;

Hierarchy Level [edit security macsec connectivity-association]

Release Information Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description Specifies protocols whose packets are not secured using Media Access Control Security (MACsec) when MACsec is enabled on a link using static connectivity association key (CAK) security mode.

When this option is enabled in a connectivity association that is attached to an interface, MACsec is not enabled for all packets of the specified protocols that are sent and received on the link.

Default Disabled.

All packets are secured on a link when MACsec is enabled, with the exception of all types of Spanning Tree Protocol (STP) packets.

Options protocol-name — Specifies the name of the protocol that should not be MACsec-secured.

Options include:

- cdp — Cisco Discovery Protocol.
- lacp — Link Aggregation Control Protocol.
- lldp — Link Level Discovery Protocol.

Required Privilege Level admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
ethernet (Chassis Cluster)

Supported Platforms
SRX Series, vSRX

Syntax
```
ethernet {
  device-count number;
  lacp {
    link-protection {
      non-revertive;
    }
    system-priority number;
  }
}
```

Hierarchy Level
[edit chassis aggregated-devices]

Release Information
Statement introduced in Junos OS Release 10.2.

Description
Configure properties for aggregated Ethernet devices.

Options
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- [cluster (Chassis) on page 411](#)
- *Example: Configuring Aggregated Ethernet Device with LAG and LACP (CLI Procedure)*
fabric-options

Supported Platforms SRX Series, vSRX

Syntax fabric-options {
member-interfaces member-interface-name;
}

Hierarchy Level [edit interfaces interface-name]

Release Information Statement introduced in Junos OS Release 8.5.

Description Configure fabric interface specific options in chassis clusters.

NOTE: When you run the system autoinstallation command, the command will configure unit 0 logical interface for all the active state physical interfaces. However, a few commands such as fabric-options do not allow the physical interface to be configured with a logical interface. If the system autoinstallation and the fabric-options commands are configured together, the following message is displayed:

incompatible with 'system autoinstallation'

Options The remaining statement is explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Example: Configuring the Chassis Cluster Fabric Interfaces on page 107
- member-interfaces on page 441
gigether-options (Chassis Cluster)

Supported Platforms
SRX Series, vSRX

Syntax

```bash
gigether-options {
  802.3ad {
    backup | primary | bundle;
    lacp {
      port-priority priority;
    }
  }
  auto-negotiation {
    remote-fault {
      local-interface-offline | local-interface-online;
    }
  }
  no-auto-negotiation;
  ethernet-switch-profile {
    mac-learn-enable;
    tag-protocol-id [tpids];
    ethernet-policer-profile {
      input-priority-map {
        ieee802.1p {
          premium [values];
        }
      }
      output-priority-map {
        classifier {
          premium {
            forwarding-class class-name {
              loss-priority (high | low);
            }
          }
        }
      }
      policer cos-policer-name {
        aggregate {
          bandwidth-limit bps;
          burst-size-limit bytes;
        }
        premium {
          bandwidth-limit bps;
          burst-size-limit bytes;
        }
      }
    }
  }
  flow-control | no-flow-control;
  ieee-802-3az-eee;
  ignore-l3-incompletes;
  loopback | no-loopback;
  mpls {
    pop-all-labels {
      required-depth (1 | 2);
    }
  }
}
```
redundant-parent (Interfaces Gigabit Ethernet) interface-name;
source-address-filter {
 mac-address;
}

Hierarchy Level: [edit interfaces interface-name]

Description: Configure Gigabit Ethernet specific interface properties.

Options: The remaining statements are explained separately. See CLI Explorer.

Required Privilege:
- Interface—to view this statement in the configuration.
- Interface-control—to add this statement to the configuration.

Related Documentation:
- Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses on page 131
global-threshold

Supported Platforms
SRX Series, vSRX

Syntax
global-threshold number;

Hierarchy Level
[edit chassis cluster redundancy-group group-number ip-monitoring]

Release Information
Statement introduced in Junos OS Release 10.1.

Description
Specify the failover value for all IP addresses monitored by the redundancy group. When IP addresses with a configured total weight in excess of the threshold have become unreachable, the weight of IP monitoring is deducted from the redundancy group threshold.

Options
number —Value at which the IP monitoring weight is applied against the redundancy group failover threshold.

- **Range:** 0 through 255
- **Default:** 0

Required Privilege Level
interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation
- [ip-monitoring on page 436](#)
global-weight

Supported Platforms SRX Series, vSRX

Syntax global-weight number;

Hierarchy Level [edit chassis cluster redundancy-group group-number ip-monitoring]

Release Information Statement introduced in Junos OS Release 10.1.

Description Specify the relative importance of all IP address monitored objects to the operation of the redundancy group. Every monitored IP address is assigned a weight. If the monitored address becomes unreachable, the weight of the object is deducted from the global-threshold of IP monitoring objects in its redundancy group. When the global-threshold reaches 0, the global-weight is deducted from the redundancy group. Every redundancy group has a default threshold of 255. If the threshold reaches 0, a failover is triggered. Failover is triggered even if the redundancy group is in manual failover mode and preemption is not enabled.

Options number — Combined weight assigned to all monitored IP addresses. A higher weight value indicates a greater importance.

- **Range:** 0 through 255
- **Default:** 255

Required Privilege Level interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation • ip-monitoring on page 436
gratuitous-arp-count

Supported Platforms
SRX Series, vSRX

Syntax
gratuitous-arp-count number;

Hierarchy Level
[edit chassis cluster redundancy-group group-number]

Release Information
Statement introduced in Junos OS Release 9.0.

Description
Specify the number of gratuitous Address Resolution Protocol (ARP) requests to send on an active interface after failover.

Options
number—Number of gratuitous ARP requests that a newly elected primary device in a chassis cluster sends out to announce its presence to the other network devices.
Range: 1 through 16
Default: 4

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- redundancy-group (Chassis Cluster) on page 455
heartbeat-interval

Supported Platforms
SRX Series, vSRX

Syntax
heartbeat-interval *milliseconds*;

Hierarchy Level
[edit chassis cluster]

Release Information

Description
Set the interval between the periodic signals broadcast to the devices in a chassis cluster to indicate that the active node is operational.

The heartbeat-interval option works in combination with the heartbeat-threshold option to define the wait time before failover is triggered in a chassis cluster. The default values of these options produce a wait time of 3 seconds. In a large configuration approaching full capacity on an SRX5400 or SRX5600 or SRX5800 device, however, we recommend that you increase the failover wait time to 5 seconds.

For example, a heartbeat-threshold of 3 and a heartbeat-interval of 1000 milliseconds result in a total wait of 3 seconds before failover is triggered. To increase this wait to 5 seconds, you could increase the heartbeat-threshold, the heartbeat-interval, or both. A heartbeat-threshold of 5 and a heartbeat-interval of 1000 milliseconds would yield a wait time of 5 seconds. Setting the heartbeat-threshold to 4 and the heartbeat-interval to 1250 milliseconds would also yield a wait time of 5 seconds.

NOTE: In a chassis cluster scaling environment, the heartbeat-threshold must always be set to 8.

Options
milliseconds—Time interval between any two heartbeat messages.
Range: 1000 through 2000 milliseconds
Default: 1000 milliseconds

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- [cluster (Chassis) on page 411](#)
heartbeat-threshold

Supported Platforms
SRX Series, vSRX

Syntax
heartbeat-threshold number;

Hierarchy Level
[edit chassis cluster]

Release Information

Description
Set the number of consecutive missed heartbeat signals that a device in a chassis cluster must exceed to trigger failover of the active node.

The heartbeat-threshold option works in combination with the heartbeat-interval option to define the wait time before failover is triggered in a chassis cluster. The default values of these options produce a wait time of 3 seconds. In a large configuration approaching full capacity on an SRX5400 or SRX5600 or SRX5800 device, however, we recommend that you increase the failover wait time to 5 seconds.

For example, a heartbeat-threshold of 3 and a heartbeat-interval of 1000 milliseconds result in a total wait of 3 seconds before failover is triggered. To increase this wait to 5 seconds, you could increase the heartbeat-threshold, the heartbeat-interval, or both. A heartbeat-threshold of 5 and a heartbeat-interval of 1000 milliseconds would yield a wait time of 5 seconds. Setting the heartbeat-threshold to 4 and the heartbeat-interval to 1250 milliseconds would also yield a wait time of 5 seconds.

Options
number — Number of consecutive missed heartbeats.
Range: 3 through 8
Default: 3

Required Privilege
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• cluster (Chassis) on page 411
hold-down-interval

Supported Platforms SRX Series, vSRX

Syntax
```plaintext
hold-down-interval number;
```

Hierarchy Level
```plaintext
[edit chassis cluster redundancy-group group-number]
```

Release Information Statement introduced in Junos OS Release 10.0.

Description Set the minimum interval to be allowed between back-to-back failovers for the specified redundancy group (affects manual failovers, as well as automatic failovers associated with monitoring failures).

For redundancy group 0, this setting prevents back-to-back failovers from occurring less than 5 minutes (300 seconds) apart. Note that a redundancy group 0 failover implies a Routing Engine failure.

For some configurations, such as ones with a large number of routes or logical interfaces, the default or specified interval for redundancy group 0 might not be sufficient. In such cases, the system automatically extends the dampening time in increments of 60 seconds until the system is ready for failover.

Options
- `number`—Number of seconds specified for the interval.
 - **Range:** For redundancy group 0, 300 through 1800 seconds; for redundancy group 1 through 128, 0 through 1800 seconds.
 - **Default:** For redundancy group 0, 300 seconds; for redundancy group 1 through 128, 1 second.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- cluster (Chassis) on page 411
include-sci

Supported Platforms SRX340, SRX345

Syntax include-sci;

Hierarchy Level [edit security macsec connectivity-association]

Release Information Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description Specify that the SCI tag be appended to each packet on a link that has enabled MACsec.

You must enable SCI tagging on a switch that is enabling MACsec on an Ethernet link connecting to an SRX device.

SCI tags are automatically appended to packets leaving a MACsec-enabled interface on an SRX device. This option is, therefore, not available on an SRX device.

You should only use this option when connecting a switch to an SRX device, or to a host device that requires SCI tagging. SCI tags are eight octets long, so appending an SCI tag to all traffic on the link adds a significant amount of unneeded overhead.

Default SCI tagging is enabled on an SRX device that have enabled MACsec using static connectivity association key (CAK) security mode, by default.

SCI tagging is disabled on all other interfaces, by default.

Required Privilege Level admin—To view this statement in the configuration.

admin-control—To add this statement to the configuration.

Related Documentation • Understanding Media Access Control Security (MACsec) for SRX Series on page 361

• Configuring Media Access Control Security (MACsec) on page 363

• macsec on page 440
interface (Chassis Cluster)

Supported Platforms
SRX Series, vSRX

Syntax
`logical-interface-name secondary-ip-address;`

Hierarchy Level
`[edit chassis cluster redundancy-group group-number ip-monitoring family family-name IP–address]`

Release Information
Statement introduced in Junos OS Release 10.1.

Description
Specify the redundant Ethernet interface, including its logical-unit-number, through which the monitored IP address must be reachable. The specified redundant Ethernet interface can be in any redundancy group. Likewise specify a secondary IP address to be used as a ping source for monitoring the IP address through the secondary node's redundant Ethernet interface link.

Options

- **logical-interface-name**—Redundant Ethernet interface through which the monitored IP address must be reachable. You must specify the redundant Ethernet interface logical-unit-number. Note that you must also configure a secondary ping source IP address (see below).

 Range: `reth0.logical-unit-number` through `reth128.logical-unit-number` (device dependent)

 NOTE: If the redundant Ethernet interface belongs to a VPN routing and forwarding (VRF) routing instance type, then the IP monitoring feature will not work.

- **secondary-ip-address IP–address**—Specify the IP address that are used as the source IP address of ping packets for IP monitoring from the secondary child link of the redundant Ethernet interface. An IP address for sourcing the ping packets on the primary link of the redundant Ethernet interface must be configured before you can configure `secondary-ip-address`. For legacy support reasons, monitoring on an IP address without identifying a redundant Ethernet interface and without configuring a secondary ping source IP address is permitted but not recommended.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

- [cluster (Chassis) on page 411](#)
interfaces (MACsec)

Supported Platforms SRX340, SRX345

Syntax \texttt{interface-name \{ connectivity-association connectivity-association-name; \}}

Hierarchy Level [edit security macsec cluster-data-port]

Release Information Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description Specify chassis cluster fabric interface on which MACsec is enabled. For SRX340, and SRX345 devices, the fabric interface can be any 1 G Ethernet interface. Use this configuration to apply a connectivity association to an interface, which enables Media Access Control Security (MACsec) on that interface.

Required Privilege
Level admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
• Understanding Media Access Control Security (MACsec) for SRX Series on page 361
• Configuring Media Access Control Security (MACsec) on page 363
• macsec on page 440
interface-monitor

Supported Platforms SRX Series, vSRX

Syntax
interface-monitor interface-name {
 weight number;
}

Hierarchy Level [edit chassis cluster redundancy-group group-number]

Release Information Statement introduced in Junos OS Release 9.0.

Description Specify a redundancy group interface to be monitored for failover and the relative weight of the interface.

Options
- `interface-name`—Name of the physical interface to monitor.

 The remaining statements are explained separately. See [CLI Explorer](#).

Required Privilege
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation
- cluster (Chassis) on page 411
internal (Security IPsec)

Supported Platforms
SRX5400, SRX5600, SRX5800

Syntax
```
internal {
  security-association {
    manual {
      encryption {
        algorithm 3des-cbc;
        iked-encryption enable;
        key ascii-text ascii-text;
      }
    }
  }
}
```

Hierarchy Level
[edit security ipsec internal-security-association]

Release Information
Statement introduced in Junos OS Release 12.1X45-D10.
Support for `iked-encryption` option added in Junos OS Release 12.1X47-D15.

Description
Enable secure login and to prevent attackers from gaining privileged access through this control port by configuring the internal IP security (IPsec) security association (SA).

When the internal IPsec is configured, IPsec-based `rlogin` and remote command (`rcmd`) are enforced, so an attacker cannot gain unauthorized information.

Options
- `security-association`—Specify an IPsec SA. An SA is a simplex connection that allows two hosts to communicate with each other securely by means of IPsec.
- `manual encryption`—Specify a manual SA. Manual SAs require no negotiation; all values, including the keys, are static and specified in the configuration.

NOTE: Only the 3des-cbc encryption algorithm is supported.

- `iked-encryption`—Enable encryption for internal messages.
 Values:
 - `enable`—Enable HA link encryption IKE internal messages

- `key`—Specify the encryption key. You must ensure that the manual encryption key is in ASCII text and 24 characters long; otherwise, the configuration will result in a commit failure.
<table>
<thead>
<tr>
<th>Required Privilege Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>To view this statement in the configuration.</td>
</tr>
<tr>
<td>interface-control</td>
<td>To add this statement to the configuration.</td>
</tr>
</tbody>
</table>

Related Documentation

- Example: Configuring an Active/Passive Chassis Cluster on SRX Series Services Gateways on page 302
- `show security internal-security-association` on page 602
ip-monitoring

Supported Platforms SRX Series, vSRX

Syntax

```
ip-monitoring {
    family {
        inet {
            ipv4-address {
                interface {
                    logical-interface-name;
                    secondary-ip-address ip-address;
                }
                weight number;
            }
            global-threshold number;
            global-weight number;
            retry-count number;
            retry-interval seconds;
        }
    }
}
```

Hierarchy Level

[edit chassis cluster redundancy-group group-number]

Release Information Statement updated in Junos OS Release 10.1.

Description Specify a global IP address monitoring threshold and weight, and the interval between pings (retry-interval) and the number of consecutive ping failures (retry-count) permitted before an IP address is considered unreachable for all IP addresses monitored by the redundancy group. Also specify IP addresses, a monitoring weight, a redundant Ethernet interface number, and a secondary IP monitoring ping source for each IP address, for the redundancy group to monitor.

Options

IPv4 address—The address to be continually monitored for reachability.

NOTE: All monitored object failures, including IP monitoring, are deducted from the redundancy group threshold priority. Other monitored objects include interface monitor, SPU monitor, cold-sync monitor, and NPC monitor (on supported platforms).

The remaining statements are explained separately. See CLI Explorer.

Required Privilege

Level interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.
key-server-priority (MACsec)

Supported Platforms
SRX340, SRX345

Syntax
key-server-priority priority-number;

Hierarchy Level
[edit security macsec connectivity-association mka]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Specifies the key server priority used by the MACsec Key Agreement (MKA) protocol to select the key server when MACsec is enabled using static connectivity association key (CAK) security mode.

The switch with the lower priority-number is selected as the key server.

If the priority-number is identical on both sides of a point-to-point link, the MKA protocol selects the device with the lower MAC address as the key server.

Default
The default key server priority number is 16.

Options
priority-number — Specifies the MKA server election priority number.

The priority-number can be any number between 0 and 255. The lower the number, the higher the priority.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
• Understanding Media Access Control Security (MACsec) for SRX Series on page 361
• Configuring Media Access Control Security (MACsec) on page 363
• macsec on page 440
lacr (Interfaces)

Supported Platforms
SRX Series

Syntax
lacr {
 (active | passive);
 periodic;
}

Hierarchy Level
[edit interfaces interface-name redundant-ether-options]

Release Information
Statement introduced in Junos OS Release 10.2.

Description
For redundant Ethernet interfaces in a chassis cluster only, configure Link Aggregation Control Protocol (LACP).

Options
- **active**—Initiate transmission of LACP packets.
- **passive**—Respond to LACP packets.
- **periodic**—Interval for periodic transmission of LACP packets.

Default: If you do not specify lacp as either **active** or **passive**, LACP remains off (the default).

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- *Understanding LACP on Standalone Devices*
- *periodic (Interfaces)*
link-protection (Chassis Cluster)

Supported Platforms SRX Series, vSRX

Syntax
```
link-protection {
  non-revertive;
}
```

Hierarchy Level [edit chassis aggregated-devices ethernet lacp]

Release Information Statement introduced in Junos OS Release 10.2.

Description Enable Link Aggregation Control Protocol (LACP) link protection at the global (chassis) level.

Options
- **non-revertive**—Disable the ability to switch to a better priority link (if one is available) after a link is established as active and a collection or distribution is enabled.

Required Privilege Level
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation
- [cluster (Chassis) on page 411](#)
- *Example: Configuring Aggregated Ethernet Device with LAG and LACP (CLI Procedure)*
macsec

Supported Platforms
SRX340, SRX345

Syntax
macsec {
 cluster-control-port <idx> {
 connectivity-association connectivity-association-name;
 }
 cluster-data-port interface-name {
 connectivity-association connectivity-association-name;
 }
 connectivity-association connectivity-association-name {
 exclude-protocol protocol-name;
 include-sci;
 mka {
 key-server-priority priority-number;
 must-secure;
 transmit-interval milliseconds;
 }
 no-encryption;
 offset (0|30|50);
 pre-shared-key {
 cak hexadecimal-number;
 ckn hexadecimal-number;
 }
 replay-protect {
 replay-window-size number-of-packets;
 }
 security-mode security-mode;
 }
 traceoptions {
 file {
 filename;
 files number;
 match regular-expression;
 (world-readable | no-world-readable);
 size maximum-file-size;
 }
 flag flag;
 }
}

Hierarchy Level
[edit security]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Configure Media Access Control Security (MACsec).

Options
cluster-control-port <idx>—Specify chassis cluster control interface on which MACsec is enabled.

Values: 0.
cluster-data-port interface-name—Specify chassis cluster fabric interface on which MACsec is enabled.

connectivity-association—Create or configure a MACsec connectivity association.

traceoptions—Define MACsec configuration tracing operations.

The remaining statements are explained separately. See CLI Explorer.

member-interfaces

Supported Platforms SRX Series, vSRX

Syntax `member-interfaces member-interface-name;`

Hierarchy Level `[edit interfaces interface-name fabric-options]`

Release Information Statement introduced in Junos OS Release 8.5.

Description Specify the member interface name. Member interfaces that connect to each other must be of the same type.

Options `member-interface-name`—Member interface name.

Required Privilege Level interface—To view this statement in the configuration.

Related Documentation • Understanding Interfaces
mka

Supported Platforms
SRX340, SRX345

Syntax
mka
must-secure;
key-server-priority priority-number;
transmit-interval interval;
}

Hierarchy Level
[edit security macsec connectivity-association]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Specify parameters for the MACsec Key Agreement (MKA) protocol.

Options
The remaining statements are explained separately.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
• Understanding Media Access Control Security (MACsec) for SRX Series on page 361
• Configuring Media Access Control Security (MACsec) on page 363
• macsec on page 440
must-secure

Supported Platforms SRX340, SRX345

Syntax must-secure;

Hierarchy Level [edit security macsec connectivity-association mka]

Release Information Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description Specifies that all traffic traversing the MACsec-secured link must be forwarded onward.

When the **must-secure** is enabled, all traffic that is not MACsec-secured that is received on the interface is dropped.

When the **must-secure** is disabled, all traffic from devices that support MACsec is MACsec-secured while traffic received from devices that do not support MACsec is forwarded through the network.

The **must-secure** is particularly useful in scenarios where multiple devices, such as a phone and a PC, are accessing the network through the same Ethernet interface. If one of the devices supports MACsec while the other device does not support MACsec, the device that does not support MACsec can continue to send and receive traffic over the network—provided the **must-secure** is disabled—while traffic to and from the device that supports MACsec is MACsec-secured. In this scenario, traffic to the device that is not MACsec-secured must be VLAN-tagged.

Default The **must-secure** option is disabled.

Required Privilege Level

- admin—To view this statement in the configuration.
- admin-control—To add this statement to the configuration.

Related Documentation

- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
network-management

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>SRX Series, vSRX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>network-management { cluster-master; }</code></td>
</tr>
<tr>
<td>Hierarchy Level</td>
<td><code>[edit chassis cluster]</code></td>
</tr>
<tr>
<td>Description</td>
<td>Define parameters for network management. To manage an SRX Series Services Gateway cluster through a non-fxp0 interface, use this command to define the node as a virtual chassis in NSM. This command establishes a single DMI connection from the primary node to the NSM server. This connection is used to manage both nodes in the cluster. Note that the non-fxp0 interface (regardless of which node it is present on) is always controlled by the primary node in the cluster. The output of a <code><get-system-information></code> RPC returns a <code><chassis-cluster></code> tag in all SRX Series devices. When NSM receives this tag, it models SRX Series clusters as devices with autonomous control planes.</td>
</tr>
<tr>
<td>Options</td>
<td><code>cluster-master</code>—Enable in-band management on the primary cluster node through NSM.</td>
</tr>
<tr>
<td>Required Privilege</td>
<td>interface—To view this statement in the configuration. interface-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td>Related Documentation</td>
<td>• [cluster (Chassis) on page 411]</td>
</tr>
</tbody>
</table>
no-encryption (MACsec)

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>SRX340, SRX345</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>no-encryption;</td>
</tr>
<tr>
<td>Hierarchy Level</td>
<td>[edit security macsec connectivity-association security-mode static-cak]</td>
</tr>
<tr>
<td>Release Information</td>
<td>Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.</td>
</tr>
<tr>
<td>Description</td>
<td>Enable MACsec encryption within a secure channel.</td>
</tr>
</tbody>
</table>

You can enable MACsec without enabling encryption. If a connectivity association with a secure channel that has not enabled MACsec encryption is associated with an interface, traffic is forwarded across the Ethernet link in clear text. You are, therefore, able to view this unencrypted traffic when you are monitoring the link. The MACsec header is still applied to the frame, however, and all MACsec data integrity checks are run on both ends of the link to ensure the traffic has not been tampered with and does not represent a security threat.

Traffic traversing a MAC-enabled point-to-point Ethernet link traverses the link at the same speed regardless of whether encryption is enabled or disabled. You cannot increase the speed of traffic traversing a MACsec-enabled Ethernet link by disabling encryption.

When MACsec is configuring using static connectivity association key (CAK) security mode, the encryption setting is configured outside of the secure channel using the no-encryption configuration statement.

<table>
<thead>
<tr>
<th>Default</th>
<th>MACsec encryption is disabled when MACsec is configured, by default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Privilege</td>
<td>admin—To view this statement in the configuration.</td>
</tr>
<tr>
<td>Level</td>
<td>admin-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td>Related Documentation</td>
<td>• Understanding Media Access Control Security (MACsec) for SRX Series on page 361</td>
</tr>
<tr>
<td></td>
<td>• Configuring Media Access Control Security (MACsec) on page 363</td>
</tr>
<tr>
<td></td>
<td>• macsec on page 440</td>
</tr>
</tbody>
</table>
node (Chassis Cluster)

Supported Platforms SRX Series, vSRX

Syntax

```node (0 | 1);
}
```

Hierarchy Level [edit chassis cluster]

Release Information Statement introduced in Junos OS Release 9.0.

Description Identify the device in a chassis cluster. In a typical cluster setup, a chassis cluster ID identifies the cluster to which the devices belong, and a chassis cluster node ID identifies a unique node within the cluster. The node configured as 0 functions as the primary node and the other node function as the secondary node.

Required Privilege

- **Level** interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- cluster (Chassis) on page 411
node (Chassis Cluster Redundancy Group)

Supported Platforms SRX Series, vSRX

Syntax

 node (0 | 1) {
 priority number;
 }

Hierarchy Level [edit chassis cluster redundancy-group group-number]

Release Information Statement introduced in Junos OS Release 9.0.

Description Identify each cluster node in a redundancy group and set its relative priority for mastership.

Options —

 node—Cluster node number, set with the set chassis cluster node node-number statement.

 priority number—Priority value of the node. The eligible node with the highest priority is elected master.

Required Privilege Level

 interface—To view this statement in the configuration.

 interface-control—To add this statement to the configuration.

Related Documentation • redundancy-group (Chassis Cluster) on page 455
ntp

Supported Platforms ACX Series, EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Syntax ntp {
 authentication-key number type type value password;
 boot-server address;
 broadcast <address> <key key-number> <routing-instance-name routing-instance-name>
 <version value> <ttl value>;
 broadcast-client;
 multicast-client <address>;
 peer address <key key-number> <version value> <prefer>;
 server address <key key-number> <version value> <prefer>;
 source-address source-address <routing-instance routing-instance-name>;
 trusted-key [key-numbers];
 }

Hierarchy Level [edit system]

Release Information Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description Configure NTP on the router or switch.
 The remaining statements are explained separately.

Required Privilege Level system—To view this statement in the configuration.
 system-control—To add this statement to the configuration.

Related Documentation • Synchronizing and Coordinating Time Distribution Using NTP
 • NTP Time Synchronization on SRX Series Devices on page 277
ntp threshold

Supported Platforms
SRX Series

Syntax
ntp {
 threshold [
 value;
 action (accept | reject);
]
}

Hierarchy Level
[edit system ntp]

Release Information
Statement introduced in Junos OS Release 15.1X49-D70.

Description
Assign a threshold value for Network Time Protocol (NTP) adjustment that is outside of the acceptable NTP update and specify whether to accept or reject NTP synchronization when the proposed time from the NTP server exceeds the configured threshold value. If `accept` is the specified action, the system synchronizes the device time with the NTP server, but logs the time difference between the configured threshold and the time proposed by the NTP server; if `reject` is the specified action, synchronization with the time proposed by the NTP server is rejected, but the system provides the option of manually synchronizing the time with the time proposed by the NTP server and logs the time difference between the configured threshold and the time proposed by the NTP server. By logging the time difference and rejecting synchronization when the configured threshold is exceeded, this feature helps improve security on the NTP service.

Options
- **value**—Specify the maximum value in seconds allowed for NTP adjustment.
 Range: 1 through 600.
 Default: The default value is 400.

- **action**—Specify the actions for NTP abnormal adjustment.
 - `accept`—Enable log mode for abnormal NTP adjustment. When the proposed time from the NTP server is outside of the configured threshold value, the device time synchronizes with the NTP server, but the system logs the time difference between the configured threshold and the time proposed by the NTP server.
 - `reject`—Enable log and reject mode for abnormal NTP adjustment. When the proposed time from the NTP server is outside of the configured threshold value, the system rejects synchronization, but provides the option for manually synchronizing the time and logs the time difference between the configured threshold and the time proposed by the NTP server.

Required Privilege Level
- **security**—To view this statement in the configuration.
- **security-control**—To add this statement to the configuration.
Related Documentation

- ntp on page 448
- set date ntp on page 575
- show system ntp threshold on page 591
- NTP Time Synchronization on SRX Series Devices on page 277
offset

Supported Platforms SRX340, SRX345

Syntax offset (0 | 30 | 50);

Hierarchy Level [edit security macsec connectivity-association]
[edit security macsec connectivity-association security-mode static-cakl]

Release Information Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description Specifies the number of octets in an Ethernet frame that are sent in unencrypted plain-text when encryption is enabled for MACsec.

- Setting the offset to 30 allows a feature to see the IPv4 header and the TCP/UDP header while encrypting the remaining traffic. Setting the offset to 50 allows a feature to see the IPv6 header and the TCP/UDP header while encrypting the remaining traffic.

- You would typically forward traffic with the first 30 or 50 octets unencrypted if a feature needed to see the data in the octets to perform a function, but you otherwise prefer to encrypt the remaining data in the frames traversing the link. Load balancing features, in particular, typically need to see the IP and TCP/UDP headers in the first 30 or 50 octets to properly load balance traffic.

- You configure the **offset** in the [edit security macsec connectivity-association] hierarchy when you are enabling MACsec using static connectivity association key (CAK) or dynamic security mode.

Default 0

Options 0—Specifies that no octets are unencrypted. When you set the offset to 0, all traffic on the interface where the connectivity association or secure channel is applied is encrypted.

30—Specifies that the first 30 octets of each Ethernet frame are unencrypted.

50—Specified that the first 50 octets of each Ethernet frame are unencrypted.

NOTE: In IPv4 traffic, setting the offset to 30 allows a feature to see the IPv4 header and the TCP/UDP header while encrypting the rest of the traffic. An offset of 30, therefore, is typically used when a feature needs this information to perform a task on IPv4 traffic.
NOTE: In IPv6 traffic, setting the offset to 50 allows a feature to see the IPv6 header and the TCP/UDP header while encrypting the rest of the traffic. An offset of 50, therefore, is typically used when a feature needs this information to perform a task on IPv6 traffic.

preempt (Chassis Cluster)

Supported Platforms
SRX Series, vSRX

Syntax
preempt;

Hierarchy Level
[editchassisclusterredundancy-group group-number]

Release Information
Statement introduced in Junos OS Release 9.0.

Description
Enable chassis cluster node preemption within a redundancy group. If preempt is added to a redundancy group configuration, the device with the higher priority in the group can initiate a failover to become master. By default, preemption is disabled.

Initiating a failover with the request chassis cluster failover node or request chassis cluster failover redundancy-group command overrides the priority settings and preemption.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- redundancy-group (Chassis Cluster) on page 455
pre-shared-key

Supported Platforms
SRX340, SRX345

Syntax
pre-shared-key {
 cak hexadecimal-number;
 ckn hexadecimal-number;
}

Hierarchy Level
[edit security macsec connectivity-association]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Specifies the pre-shared key used to enable MACsec using static connectivity association key (CAK) security mode.

A pre-shared key includes a connectivity association key name (CKN) and a connectivity association key (CAK). A pre-shared key is exchanged between two devices at each end of a point-to-point link to enable MACsec using static CAK security mode. The MACsec Key Agreement (MKA) protocol is enabled after the pre-shared keys are successfully verified and exchanged. The pre-shared key—the CKN and CAK—must match on both ends of a link.

Default
No pre-shared keys exist, by default.

Options
The remaining statements are explained separately.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
priority (Chassis Cluster)

Supported Platforms SRX Series, vSRX

Syntax priority number;

Hierarchy Level [edit chassis cluster redundancy-group group-number node node-number]

Release Information Statement introduced in Junos OS Release 9.0.

Description Define the priority of a node (device) in a redundancy group. Initiating a failover with the request chassis cluster failover node or request chassis cluster failover redundancy-group command overrides the priority settings.

Options number—Priority value of the node. The eligible node with the highest priority is elected master.
Range: 1 through 254

Required Privilege Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation • redundancy-group (Chassis Cluster) on page 455
redundancy-group (Chassis Cluster)

Supported Platforms SRX Series, vSRX

Syntax
```
redundancy-group group-number {
  gratuitous-arp-count number;
  hold-down-interval number;
  interface-monitor interface-name {
    weight number;
  }
  ip-monitoring {
    family {
      inet {
        ipv4-address {
          interface {
            logical-interface-name;
            secondary-ip-address ip-address;
          }
          weight number;
        }
      }
      global-threshold number;
      global-weight number;
      retry-count number;
      retry-interval seconds;
    }
    node (0 | 1) {
      priority number;
    }
    preempt;
  }
}
```

Hierarchy Level [edit chassis cluster]

Release Information Statement introduced in Junos OS Release 9.0.

Description Define a redundancy group. Except for redundancy group 0, a redundancy group is a logical interface consisting of two physical Ethernet interfaces, one on each chassis. One interface is active, and the other is on standby. When the active interface fails, the standby interface becomes active. The logical interface is called a redundant Ethernet interface (reth).

Redundancy group 0 consists of the two Routing Engines in the chassis cluster and controls which Routing Engine is primary. You must define redundancy group 0 in the chassis cluster configuration.

Options
- `group-number` — Redundancy group identification number.

 Range: 0 through 128
NOTE: The maximum number of redundancy groups is equal to the number of redundant Ethernet interfaces that you configure.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
- Interface—To view this statement in the configuration.
- Interface-control—To add this statement to the configuration.

Related Documentation
- [ip-monitoring on page 436](#)
redundancy-interface-process

Supported Platforms
SRX Series, vSRX

Syntax
```
redundancy-interface-process {
    command binary-file-path;
    disable;
    failover (alternate-media | other-routing-engine);
}
```

Hierarchy Level
[edit system processes]

Release Information
Statement introduced in Junos OS Release 8.5.

Description
Specify as an active or backup process of an application server, configure to process traffic for more than one logical application server.

Options
- **command** `binary-file-path`—Path to the binary process.
- **disable**—Disable the redundancy interface management process.
- **failover**—Configure the device to reboot if the software process fails four times within 30 seconds, and specify the software to use during the reboot.
- **alternate-media**—Configure the device to switch to backup media that contains a version of the system if a software process fails repeatedly.
- **other-routing-engine**—Instruct the secondary Routing Engine to take mastership if a software process fails. If this statement is configured for a process, and that process fails four times within 30 seconds, then the device reboots from the secondary Routing Engine.

Required Privilege
- **Level** system—To view this statement in the configuration.
- system-control—To add this statement to the configuration.

Related Documentation
- [cluster (Chassis) on page 411](#)
redundant-ether-options

Supported Platforms
SRX Series, vSRX

Syntax
```pseudo
cli
redundant-ether-options {
(flow-control | no-flow-control);

lacp {
(active | passive);
periodic (fast | slow);
}

link-speed speed;
(loopback | no-loopback);
minimum-links number;
redundancy-group number;
source-address-filter mac-address;
(source-filtering | no-source-filtering);
}
```

Hierarchy Level
[edit interfaces interface-name]

Release Information
Statement introduced in Junos OS Release 9.2.

Description
Configure Ethernet redundancy options for a chassis cluster.

Options
The remaining statements are explained separately. See [CLI Explorer](#).

Required Privilege
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Example: Enabling Eight Queue Class of Service on Redundant Ethernet Interfaces on page 152
- Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses on page 131
redundant-parent (Interfaces)

Supported Platforms SRX Series, vSRX

Syntax redundant-parent redundant-ethernet-interface-name;

Hierarchy Level [edit interfaces interface-name gigether-options]
 [edit interfaces interface-name fastether-options]

Release Information Statement introduced in Junos OS Release 10.2.

Description Assign local (child) interfaces to the redundant Ethernet (reth) interfaces. A redundant Ethernet interface contains a pair of Fast Ethernet interfaces or a pair of Gigabit Ethernet interfaces that are referred to as child interfaces of the redundant Ethernet interface (the redundant parent).

Required Privilege
Level interface—To view this statement in the configuration.

Related Documentation • Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses on page 131
redundant-pseudo-interface-options

Supported Platforms
SRX Series, vSRX

Syntax
```yaml
redundant-pseudo-interface-options {  
  redundancy-group redundancy-group-number;  
}
```

Hierarchy Level
[edit interfaces lo0]

Release Information
Statement introduced in Junos OS Release 12.1X44-D10.

Description
Configure the loopback pseudointerface in a redundancy group.

An Internet Key Exchange (IKE) gateway operating in chassis cluster, needs an external interface to communicate with a peer device. When an external interface (a reth interface or a standalone interface) is used for communication; the interface might go down when the physical interfaces are down. Instead, use loopback interfaces as an alternative to physical interfaces.

Options
- `redundancy-group-number`— Configure the redundancy group number.
 Range: 0 through 255

Required Privilege Level
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation
- [Understanding Loopback Interface for a High Availability VPN](#)

Copyright © 2017, Juniper Networks, Inc.
replay-protect

Supported Platforms
SRX340, SRX345

Syntax
replay-protect {
 replay-window-size number-of-packets;
}

Hierarchy Level
[edit security macsec connectivity-association]

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Enable replay protection for MACsec.

A replay window size specified using the `replay-window-size number-of-packets` statement must be specified to enable replay protection.

Options
The remaining statements are explained separately.

Required Privilege Level
- `admin`—To view this statement in the configuration.
- `admin-control`—To add this statement to the configuration.

Related Documentation
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
replay-window-size

Supported Platforms
SRX340, SRX345

Syntax
`replay-window-size number-of-packets;`

Hierarchy Level
`[edit security macsec connectivity-association replay-protect]`

Release Information
Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description
Specifies the size of the replay protection window. This statement has to be configured to enable replay protection.

When MACsec is enabled on an Ethernet link, an ID number is assigned to each packet entering the link. The ID number of the packet is checked by the receiving interface after the packet has traversed the MACsec-enabled link.

When replay protection is enabled, the sequence of the ID number of received packets are checked. If the packet arrives out of sequence and the difference between the packet numbers exceeds the replay protection window size, the packet is dropped by the receiving interface. For instance, if the replay protection window size is set to five and a packet assigned the ID of 1006 arrives on the receiving link immediately after the packet assigned the ID of 1000, the packet that is assigned the ID of 1006 is dropped because it falls outside the parameters of the replay protection window.

Replay protection is especially useful for fighting man-in-the-middle attacks. A packet that is replayed by a man-in-the-middle attacker on the Ethernet link will arrive on the receiving link out of sequence, so replay protection helps ensure the replayed packet is dropped instead of forwarded through the network.

Replay protection should not be enabled in cases where packets are expected to arrive out of order.

Default
Replay protection is disabled.

Options
`number-of-packets` — Specifies the size of the replay protection window, in packets.

When this variable is set to 0, all packets that arrive out-of-order are dropped. The maximum out-of-order number-of-packets that can be configured is 65535.

Required Privilege Level
admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
reth (Interfaces)

Supported Platforms

SRX Series, vSRX

Syntax

reth <0 | 1> {
 accounting-profile;
 description;
 disable;
 encapsulation;
 gratuitous-arp-reply;
 hierarchical-scheduler {
 implicit-hierarchy;
 maximum-hierarchy-levels;
 }
 mac;
 mtu;
 native-vlan-id;
 no-gratuitous-arp-reply;
 no-gratuitous-arp-request;
 (per-unit-scheduler | no-per-unit-scheduler);
 promiscuous-mode;
 redundant-ether-options {
 (flow-control | no-flow-control);
 lacp {
 (active | passive);
 periodic (fast | slow);
 }
 link-speed speed;
 (loopback | no-loopback);
 minimum-links number;
 redundancy-group number;
 }
 traceoptions {
 flag (all | event | ipc | media);
 }
} (traps | no-traps);
unit unit-number {
 accounting-profile name;
 alias;
 bandwidth bandwidth;
 description text;
 disable;
 encapsulation (dix | ether-vpls-fr | frame-relay-ppp | ppp-over-ether | vlan-bridge | vlan-ccc | vlan-vpls | vlan-tcc);
 family {
 ethernet-switching {
 bridge-domain-type (svlan) bvlan);
 inner-vlan [members];
 inter-switch-link;
 interface-mode (access | trunk);
 recovery-timeout seconds;
 storm-control;
 vlan [members];
 }
vlan-auto-sense;
vlan-rewrite {
 translate {
 from-vlan-id;
 to-vlan-id ;
 }
}
}
inet {
 accounting {
 destination-class-usage;
 source-class-usage {
 input;
 output;
 }
 }
 address (source–address/prefix) {
 arp destination-address ;
 }
 broadcast address;
 preferred;
 primary;
 vrrp-group group-id {
 (accept-data | no-accept-data);
 advertise-interval seconds;
 advertisements-threshold number;
 authentication-key key-value;
 authentication-type (md5 | simple);
 fast-interval milliseconds;
 inet6-advertise-interval milliseconds
 (preempt <hold-timeseconds> | no-preempt);
 preferred;
 priority value;
 track {
 interface interface-name {
 bandwidth-threshold bandwidth;
 priority-cost value;
 }
 priority-hold-time seconds;
 route route-address {
 routing-instance routing-instance;
 priority-cost value;
 }
 }
 virtual-address [address];
 virtual-link-local-address address;
 vrrp-inherit-from {
 active-group value;
 active-interface interface-name;
 }
 }
 web-authentication {
 http;
 https;
 redirect-to-https;
 }
} dhcp {
 client-identifier {
 (ascii string | hexadecimal string);
 }
 lease-time (length | infinite);
 retransmission-attempt value;
 retransmission-interval seconds;
 server-address server-address;
 update-server;
 vendor-id vendor-id ;
}

dhcp-client {
 client-identifier {
 prefix {
 host-name;
 logical-system-name;
 routing-instance-name;
 }
 use-interface-description (device | logical);
 user-id (ascii string| hexadecimal string);
 }
 lease-time (length | infinite);
 retransmission-attempt value;
 retransmission-interval seconds;
 server-address server-address;
 update-server;
 vendor-id vendor-id ;
}

filter {
 group number;
 input filter-name;
 input-list [filter-name];
 output filter-name;
 output-list [filter-name];
}

mtu value;
no-neighbor-learn;
no-redirects;
policer {
 input input-name;
}
primary;
rpf-check {
 fail-filter filter-name;
 mode {
 loose;
 }
}
sampling {
 input;
 output;
}
simple-filter;
unconditional-src-learn;
unnumbered-address {
interface-name;
preferred-source-address preferred-source-address;
}
}
inet6 {
 accounting {
 destination-class-usage;
 source-class-usage {
 input;
 output;
 }
 }
 address source-address/prefix {
 eui-64;
 ndp address {
 (mac mac-address | multicast-mac multicast-mac-address);
 publish;
 }
 preferred;
 primary;
 vrrp-inet6-group group_id {
 (accept-data | no-accept-data);
 advertisements-threshold number;
 authentication-key value;
 authentication-type (md5 | simple);
 fast-interval milliseconds;
 inet6-advertise-interval milliseconds;
 (preempt <hold-time seconds> | no-preempt);
 priority value;
 track {
 interface interface-name {
 bandwidth-threshold value;
 priority-cost value;
 }
 } priority-hold-time seconds;
 route route-address[
 routing-instance routing-instance;
]
 }
 vrrp-inherit-from {
 active-group value;
 active-interface interface-name;
 }
 }
 web-authentication {
 http;
 https;
 redirect-to-https;
 }
} (dad-disable | no-dad-disable);
filter {
 group number;
 input filter-name;
 input-list [filter-name];
 output filter-name;
output-list [filter-name];
}
mtu value;
nd6-stale-time seconds;
oo-neighbor-learn;
oo-redirects;
rpf-check {
 fail-filter filter-name;
 mode {
 loose;
 }
}
sampling {
 input;
 output;
}
unnumbered-address;
}
iso {
 address source-address;
 mtu value;
}
vpls {
 filter {
 group number;
 input filter-name;
 input-list [filter-name];
 output filter-name;
 output-list [filter-name];
 }
 policer {
 input input-name;
 output output-name;
 }
}
}
native-inner-vlan-id value;
(no-traps | traps);
proxy-arp (restricted | unrestricted);
traps;
vlan-id vlan-id;
vlan-id-list vlan-id-list;
vlan-id-range vlan-id1-vlan-id2;
vlan-tagging;
}

Hierarchy Level [edit interfaces]

Release Information Statement introduced in Junos OS Release 10.2.

Description Configure a redundant Ethernet interface (reth) for chassis cluster. It is a pseudointerface that includes at minimum of one physical interface from each node of the cluster.
Options The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level interface—To view this statement in the configuration. interface-control—To add this statement to the configuration.

Related Documentation • Example: Configuring Chassis Cluster Redundant Ethernet Interfaces for IPv4 and IPv6 Addresses on page 131 • cluster (Chassis) on page 411 • redundant-ether-options on page 458 • lacp (Interfaces) on page 438

reth-count (Chassis Cluster)

Supported Platforms SRX Series, vSRX

Syntax reth-count *number*;

Hierarchy Level [edit chassis cluster]

Release Information Statement introduced in Junos OS Release 9.0.

Description Specify the number of redundant Ethernet (reth) interfaces allowed in the chassis cluster. Note that the number of reth interfaces configured determines the number of redundancy groups that can be configured.

Options *number* — Number of redundant Ethernet interfaces allowed. **Range**: 1 through 128 **Default**: 0

Required Privilege Level interface—To view this statement in the configuration. interface-control—To add this statement to the configuration.

Related Documentation • cluster (Chassis) on page 411
retry-count (Chassis Cluster)

Supported Platforms SRX Series, vSRX

Syntax retry-count number;

Hierarchy Level [edit chassis cluster redundancy-group group-number ip-monitoring]

Description Specify the number of consecutive ping attempts that must fail before an IP address monitored by the redundancy group is declared unreachable. (See retry-interval for a related redundancy group IP address monitoring variable.)

Options number—Number of consecutive ping attempt failures before a monitored IP address is declared unreachable.

Range: 1 through 15
Default: 5

Required Privilege Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation • cluster (Chassis) on page 411
retry-interval (Chassis Cluster)

Supported Platforms
SRX Series, vSRX

Syntax
retry-interval *interval*;

Hierarchy Level
[edit chassis cluster redundancy-group *group-number* ip-monitoring]

Release Information
Statement introduced in Junos OS Release 10.1.

Description
Specify the ping packet send frequency (in seconds) for each IP address monitored by the redundancy group. (See retry-count for a related IP address monitoring configuration variable.)

Options
interval—Pause time between each ping sent to each IP address monitored by the redundancy group.

- **Range:** 1 to 30 seconds
- **Default:** 1 second

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- ip-monitoring on page 436

route-active-on

Supported Platforms
SRX Series, vSRX

Syntax
route-active-on (node0 | node1);

Hierarchy Level
[edit policy-options condition *condition-name*]

Release Information
Statement introduced in Junos OS Release 9.0.

Description
For chassis cluster configurations, identify the device (node) on which a route is active.

Options
node0 | node1—Node in a chassis cluster.

Required Privilege Level
- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

Related Documentation
- cluster (Chassis) on page 411
security-mode

Supported Platforms SRX340, SRX345

Syntax

```
security-mode security-mode;
```

Hierarchy Level

[edit security macsec connectivity-association]

Release Information

Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description

Configure the MACsec security mode for the connectivity association.

We recommend enabling MACsec on switch-to-switch Ethernet links using static connectivity association key (CAK) security mode. Static CAK security mode ensures security by frequently refreshing to a new random secure association key (SAK) and by only sharing the SAK between the two devices on the MACsec-secured point-to-point link. Additionally, some optional MACsec features—replay protection, SCI tagging, and the ability to exclude traffic from MACsec—are only available when you enable MACsec using static CAK security mode.

Options

`security-mode` — Specifies the MACsec security mode. Options include:

- **dynamic** — Dynamic mode.

 Dynamic security mode is used to enable MACsec on switch-to-host Ethernet links. In dynamic mode, a master key is retrieved from a RADIUS server by a switch and a host as part of the AAA handshake in separate transactions. The MKA protocol is enabled when the master key is exchanged between the switch and the host.

- **static-cak** — Static connectivity association key (CAK) mode.

 Static CAK security mode is used to enable MACsec on switch-to-switch Ethernet links. In `static-cak` mode, the switch at one end of the point-to-point link acts as the key server and regularly transmits a randomized key using a process that does not transmit any traffic outside of the MACsec-secured point-to-point link.

Required Privilege Level

- admin—To view this statement in the configuration.
- admin-control—To add this statement to the configuration.

Related Documentation

- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- `macsec` on page 440

Copyright © 2017, Juniper Networks, Inc.
traceoptions (Chassis Cluster)

Supported Platforms SRX Series, vSRX

Syntax
```plaintext
traceoptions {
  file {
    filename;
    files number;
    match regular-expression;
    (world-readable | no-world-readable);
    size maximum-file-size;
  }
  flag flag;
  level {
    (alert | all | critical | debug | emergency | error | info | notice | warning);
  }
  no-remote-trace;
}
```

Hierarchy Level [edit chassis cluster]

Release Information Statement modified in Junos OS Release 9.5.

Description Define chassis cluster redundancy process tracing operations.

Options
- **file filename** — Name of the file to receive the output of the tracing operation. Enclose the name within quotation marks. All files are placed in the directory `/var/log`.
- **files number** — (Optional) Maximum number of trace files. When a trace file named `trace-file` reaches its maximum size, it is renamed to `trace-file.0`, then `trace-file.1`, and so on, until the maximum number of trace files is reached. The oldest archived file is overwritten.
 - If you specify a maximum number of files, you also must specify a maximum file size with the `size` option and a filename.

 Range: 2 through 1000 files
 Default: 10 files

- **match regular-expression** — (Optional) Refine the output to include lines that contain the regular expression.

- **size maximum-file-size** — (Optional) Maximum size of each trace file, in kilobytes (KB), megabytes (MB), or gigabytes (GB). When a trace file named `trace-file` reaches this size, it is renamed `trace-file.0`. When the `trace-file` again reaches its maximum size, `trace-file.0` is renamed `trace-file.1` and `trace-file` is renamed `trace-file.0`. This renaming scheme continues until the maximum number of trace files is reached. Then the oldest trace file is overwritten.
 - If you specify a maximum file size, you also must specify a maximum number of trace files with the `files` option and filename.
Syntax: $x \text{k}$ to specify KB, $x \text{m}$ to specify MB, or $x \text{g}$ to specify GB

Range: 0 KB through 1 GB

Default: 128 KB

- **world-readable | no-world-readable**—(Optional) By default, log files can be accessed only by the user who configures the tracing operation. The **world-readable** option enables any user to read the file. To explicitly set the default behavior, use the **no-world-readable** option.

- **flag**—Trace operation or operations to perform on chassis cluster redundancy processes. To specify more than one trace operation, include multiple **flag** statements.
 - **all**—Trace all the events
 - **configuration**—Trace configuration events
 - **routing-socket**—Trace logging of rtsock activity
 - **snmp**—Trace SNMP events

Required Privilege

Level
- trace—To view this statement in the configuration.
- trace-control—To add this statement to the configuration.

Related Documentation
- **cluster (Chassis) on page 411**
transmit-interval (MACsec)

Supported Platforms SRX340, SRX345

Syntax transmit-interval interval;

Hierarchy Level [edit security macsec connectivity-association mka]

Release Information Statement introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

Description Specifies the transmit interval for MACsec Key Agreement (MKA) protocol data units (PDUs).

The MKA transmit interval setting sets the frequency for how often the MKA PDU is sent to the directly connected device to maintain MACsec on a point-to-point Ethernet link. A lower interval increases bandwidth overhead on the link; a higher interval optimizes the MKA protocol data unit exchange process.

The transmit interval settings must be identical on both ends of the link when MACsec using static connectivity association key (CAK) security mode is enabled.

We recommend increasing the interval to 6000 ms in high-traffic load environments.

Default The default transmit interval is 10000 milliseconds (10 seconds).

NOTE: Configuring aggressive transmit interval will lead to broken chassis cluster.

Options

interval — Specifies the transmit interval, in milliseconds.

Required Privilege Level

admin—To view this statement in the configuration.
admin-control—To add this statement to the configuration.

Related Documentation

• Understanding Media Access Control Security (MACsec) for SRX Series on page 361
• Configuring Media Access Control Security (MACsec) on page 363
• macsec on page 440
weight

Supported Platforms
SRX Series, vSRX

Syntax
weight number;

Hierarchy Level
[edit chassis cluster redundancy-group group-number interface-monitor interface]
[edit chassis cluster redundancy-group group-number ip-monitoring IP-address]

Release Information
Statement modified in Junos OS Release 10.1.

Description
Specify the relative importance of the object to the operation of the redundancy group. This statement is primarily used with interface monitoring and IP address monitoring objects. The failure of an object—such as an interface—with a greater weight brings the group closer to failover. Every monitored object is assigned a weight.

- interface-monitor objects—If the object fails, its weight is deducted from the threshold of its redundancy group;
- ip-monitoring objects—if a monitored IP address becomes unreachable for any reason, the weight assigned to that monitored IP address is deducted from the redundancy group’s global-threshold for IP address monitoring.

Every redundancy group has a default threshold of 255. If the threshold reaches 0, a failover is triggered. Failover is triggered even if the redundancy group is in manual failover mode and preemption is not enabled.

Options

- **number** —Weight assigned to the interface or monitored IP address. A higher weight value indicates a greater importance.

 Range: 0 through 255

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- cluster (Chassis) on page 411
CHAPTER 29

Operational Commands

- clear chassis cluster control-plane statistics
- clear chassis cluster data-plane statistics
- clear chassis cluster failover-count
- clear chassis cluster ip-monitoring failure-count
- clear chassis cluster ip-monitoring failure-count ip-address
- clear chassis cluster statistics
- request chassis cb
- request chassis cluster configuration-synchronize
- request chassis cluster failover node
- request chassis cluster failover redundancy-group
- request chassis cluster failover reset
- request chassis fpc
- request chassis cluster in-service-upgrade abort (ISSU)
- request security internal-security-association refresh
- request system scripts add
- request system reboot
- request system software in-service-upgrade (Maintenance)
- request system software rollback (SRX Series)
- set chassis cluster cluster-id node node-number reboot
- show chassis cluster control-plane statistics
- show chassis cluster data-plane interfaces
- show chassis cluster data-plane statistics
- show chassis cluster ethernet-switching interfaces
- show chassis cluster ethernet-switching status
- show chassis cluster information
- show chassis cluster information configuration-synchronization
- show chassis cluster information issu
- show chassis cluster interfaces
- show chassis cluster ip-monitoring status redundancy-group
- show chassis cluster statistics
- show chassis cluster status
- show chassis environment (Security)
- show chassis environment cb
- show chassis ethernet-switch
- show chassis fabric plane
- show chassis fabric plane-location
- show chassis fabric summary
- show chassis hardware (View)
- show chassis routing-engine (View)
- show configuration chassis cluster traceoptions
- set date ntp
- show interfaces (Gigabit Ethernet)
- show system ntp threshold
- show security macsec connections
- show security macsec statistics (SRX Series Devices)
- show security mka statistics
- show security mka sessions (SRX Series Device)
- show security internal-security-association
- show system license (View)
clear chassis cluster control-plane statistics

Supported Platforms
SRX Series, vSRX

Syntax
clear chassis cluster control-plane statistics

Release Information
Command introduced in Junos OS Release 9.3.

Description
Clear the control plane statistics of a chassis cluster.

Required Privilege
clear

Related Documentation
• show chassis cluster control-plane statistics on page 506

List of Sample Output
clear chassis cluster control-plane statistics on page 479

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear chassis cluster control-plane statistics

user@host> clear chassis cluster control-plane statistics
Cleared control-plane statistics
clear chassis cluster data-plane statistics

Supported Platforms SRX Series, vSRX

Syntax clear chassis cluster data-plane statistics

Release Information Command introduced in Junos OS Release 9.3.

Description Clear the data plane statistics of a chassis cluster.

Required Privilege clear

Related Documentation • show chassis cluster data-plane statistics on page 509

List of Sample Output clear chassis cluster data-plane statistics on page 480

Output Fields When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear chassis cluster data-plane statistics

user@host> clear chassis cluster data-plane statistics
Cleared data-plane statistics
clear chassis cluster failover-count

Supported Platforms
SRX Series, vSRX

Syntax
clear chassis cluster failover-count

Release Information
Command introduced in Junos OS Release 9.3.

Description
Clear the failover count of all redundancy groups.

Required Privilege Level
clear

Related Documentation
- request chassis cluster failover node on page 488
- request chassis cluster failover reset on page 491
- show chassis cluster status on page 535

List of Sample Output
show chassis cluster status on page 481
clear chassis cluster failover-count on page 481
show chassis cluster status on page 482

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

The following example displays the redundancy groups before and after the failover-counts are cleared.

```
show chassis cluster status

user@host> show chassis cluster status

Cluster ID: 3
Node name         Priority     Status     Preempt  Manual failover

Redundancy group: 0 , Failover count: 1
node0            200        secondary   no        no
node1            100        primary     no        no

Redundancy group: 1 , Failover count: 2
node0            10         secondary   no        no
node1            100        primary     no        no

clear chassis cluster failover-count

user@host> clear chassis cluster failover-count
Cleared failover-count for all redundancy-groups
```
show chassis cluster status

```
user@host> show chassis cluster status

Cluster ID: 3
Node name | Priority | Status   | Preempt | Manual failover
---|---------|---------|---------|--------------
node0     | 200     | secondary | no      | no          
node1     | 100     | primary   | no      | no          

Redundancy group: 0, Failover count: 0
node0     | 100     | primary   | no      | no          
node1     | 10      | secondary | no      | no          
```
clear chassis cluster ip-monitoring failure-count

Supported Platforms
SRX Series, vSRX

Syntax
clear chassis cluster ip-monitoring failure-count

Release Information
Command introduced in Junos OS Release 10.1.

Description
Clear the failure count for all IP addresses.

Required Privilege Level
clear

Related Documentation
- clear chassis cluster ip-monitoring failure-count
- clear chassis cluster ip-monitoring failure-count ip-address on page 484

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
user@host> clear chassis cluster ip-monitoring failure-count
node0:
--------------------------------------------------------------------------
Cleared failure count for all IPs
node1:
--------------------------------------------------------------------------
Cleared failure count for all IPs
```
clear chassis cluster ip-monitoring failure-count ip-address

Supported Platforms
SRX Series, vSRX

Syntax
clear chassis cluster ip-monitoring failure-count ip-address 1.1.1.1

Release Information
Command introduced in Junos OS Release 10.1.

Description
Clear the failure count for a specified IP address.

![NOTE:](image)
Entering an IP address at the end of this command is optional. If you do not specify an IP address, the failure count for all monitored IP addresses is cleared.

Required Privilege Level
clear

Related Documentation
- clear chassis cluster failover-count on page 481
- clear chassis cluster ip-monitoring failure-count on page 483

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
user@host> clear chassis cluster ip-monitoring failure-count ip-address 1.1.1.1
node0:
-------------------------------------------------------------------------
Cleared failure count for IP: 1.1.1.1
-------------------------------------------------------------------------
node1:
-------------------------------------------------------------------------
Cleared failure count for IP: 1.1.1.1
```
clear chassis cluster statistics

Supported Platforms
SRX Series, vSRX

Syntax
clear chassis cluster statistics

Release Information
Command introduced in Junos OS Release 9.3.

Description
Clear the control plane and data plane statistics of a chassis cluster.

Required Privilege Level
clear

Related Documentation
- show chassis cluster statistics on page 531

List of Sample Output
clear chassis cluster statistics on page 485

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear chassis cluster statistics

```
user@host> clear chassis cluster statistics
Cleared control-plane statistics
Cleared data-plane statistics
```
request chassis cb

Supported Platforms
PTX10008, SRX Series, vSRX

Syntax
request chassis cb (offline | online) slot slot-number

Release Information
Command introduced in Junos OS Release 9.2.
Command introduced in Junos OS Release 17.2 for PTX10008 Routers.
Starting with Junos OS Release 12.1X47-D15, the SRX5K-SCBE (SCB2) is introduced and starting with Junos OS Release 15.1X49-D10, the SRX5K-SCB3 (SCB3) with enhanced midplane is introduced.

Description
Control the operation (take the CB offline or bring online) of the Control Board (CB).

Options
- **offline**—Take the Control Board offline.
- **online**—Bring the Control Board online.
- **slot slot-number**—Control Board slot number.

Required Privilege Level
maintenance

Related Documentation
- show chassis environment cb on page 542

List of Sample Output
request chassis cb (SRX Series) on page 486
request chassis cb (PTX10008 Router) on page 486

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

request chassis cb (SRX Series)

```plaintext
user@host> request chassis cb offline slot 2 node local
node0:----------------------------------------------------------------------------------
Offline initiated, use "show chassis environment cb" to verify
```

request chassis cb (PTX10008 Router)

```plaintext
user@host> request chassis cb offline slot 1
Offline initiated, use "show chassis environment cb" to verify
```
request chassis cluster configuration-synchronize

Supported Platforms SRX Series, vSRX

Syntax request chassis cluster configuration-synchronize

Release Information Command introduced in Junos OS Release 12.1X47-D10.

Description Synchronize the configuration from the primary node to the secondary node when the secondary node joins the primary node in a cluster.

Required Privilege Level maintenance

Related Documentation
- Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes on page 275
- Verifying Chassis Cluster Configuration Synchronization Status on page 276
- NTP Time Synchronization on SRX Series Devices on page 277

List of Sample Output request chassis cluster configuration-synchronize on page 487

Output Fields When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
request chassis cluster configuration-synchronize
user@host> request chassis cluster configuration-synchronize
Performing configuration synchronization from remote node.
```
request chassis cluster failover node

Supported Platforms SRX Series, vSRX

Syntax
```
request chassis cluster failover node node-number
redundancy-group group-number
```

Release Information
Command introduced in Junos OS Release 9.0.

Description
For chassis cluster configurations, initiate manual failover in a redundancy group from one node to the other, which becomes the primary node, and automatically reset the priority of the group to 255. The failover stays in effect until the new primary node becomes unavailable, the threshold of the redundancy group reaches 0, or you use the `request chassis cluster failover reset` command.

After a manual failover, you must use the `request chassis cluster failover reset` command before initiating another failover.

Options
- **node node-number**—Number of the chassis cluster node to which the redundancy group fails over.
 - Range: 0 through 1
- **redundancy-group group-number**—Number of the redundancy group on which to initiate manual failover. Redundancy group 0 is a special group consisting of the two Routing Engines in the chassis cluster.
 - Range: 0 through 255

Required Privilege Level maintenance

Related Documentation
- clear chassis cluster failover-count on page 481
- request chassis cluster failover reset on page 491
- show chassis cluster status on page 535

List of Sample Output
request chassis cluster failover node on page 488

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
```
request chassis cluster failover node

user@host> request chassis cluster failover node 0 redundancy-group 1
Initiated manual failover for redundancy group 1
```
request chassis cluster failover redundancy-group

Supported Platforms
SRX Series, vSRX

Syntax
request chassis cluster failover node node-number redundancy-group redundancy-group-number

Release Information
Command introduced in Junos OS Release 9.0.

Description
For chassis cluster configurations, initiate manual failover in a redundancy group from one node to the other, which becomes the primary node, and automatically reset the priority of the group to 255. The failover stays in effect until the new primary node becomes unavailable, the threshold of the redundancy group reaches 0, or you use the request chassis cluster failover reset command.

After a manual failover, you must use the request chassis cluster failover reset command before initiating another failover.

Options
- node node-number—Number of the chassis cluster node to which the redundancy group fails over.
 - Range: 0 or 1
- redundancy-group group-number—Number of the redundancy group on which to initiate manual failover. Redundancy group 0 is a special group consisting of the two Routing Engines in the chassis cluster.
 - Range: 0 through 255

Required Privilege
maintenance

Related Documentation
- Initiating a Chassis Cluster Manual Redundancy Group Failover on page 236
- Verifying Chassis Cluster Failover Status on page 239

List of Sample Output
request chassis cluster failover redundancy-group on page 489

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
request chassis cluster failover redundancy-group
user@host> request chassis cluster failover redundancy-group 0 node 1
{primary:node0}
user@host> request chassis cluster failover redundancy-group 0 node 1
- -
Initiated manual failover for redundancy group 0
request chassis cluster failover reset

Supported Platforms
SRX Series, vSRX

Syntax
```
request chassis cluster failover reset
redundancy-group group-number
```

Release Information
Command introduced in Junos OS Release 9.0.

Description
In chassis cluster configurations, undo the previous manual failover and return the redundancy group to its original settings.

Options
- `redundancy-group group-number`—Number of the redundancy group on which to reset manual failover. Redundancy group 0 is a special group consisting of the two Routing Engines in the chassis cluster.
 - **Range:** 0 through 255

Required Privilege Level
maintenance

Related Documentation
- clear chassis cluster failover-count on page 481
- request chassis cluster failover node on page 488
- show chassis cluster status on page 535

List of Sample Output
request chassis cluster failover reset on page 491

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
```
request chassis cluster failover reset
```
```
user@host> request chassis cluster failover reset redundancy-group 0
```
request chassis fpc

Supported Platforms
PTX10008, SRX Series

Syntax
request chassis fpc (offline | online | restart) slot slot-number

Release Information
Command modified in Junos OS Release 9.2.
Command introduced in Junos OS Release 17.2 for PTX10008 Routers.

Description
Control the operation of the Flexible PIC Concentrator (FPC).

NOTE: The SRX5K-SPC-2-10-40 (SPC1) and SRX5K-SPC-4-15-320 (SPC2) does not support the request chassis fpc command.

Options
- offline—Take the FPC offline.
- online—Bring the FPC online.
- restart—Restart the FPC.
- slot slot-number—Specify the FPC slot number.

Required Privilege Level
maintenance

Related Documentation
- show chassis fpc (View)

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
request chassis fpc (SRX Series)

user@host> request chassis fpc online slot 0
FPC 0 already online

request chassis fpc (PTX10008 Router)

user@host> request chassis fpc online slot 1
FPC 0 already online
request chassis cluster in-service-upgrade abort (ISSU)

Supported Platforms
SRX1500, SRX5400, SRX5600, SRX5800

Syntax
request chassis cluster in-service-upgrade abort

Release Information
Command introduced in Junos OS Release 11.2.

Description
Abort an upgrade in a chassis cluster during an in-service software upgrade (ISSU). Use this command to end the ISSU on any nodes in a chassis cluster followed by `reboot` to abort the ISSU on that device.

Options
This command has no options.

Required Privilege
view

Related Documentation
- request system software in-service-upgrade (Maintenance) on page 499

List of Sample Output
request chassis cluster in-service-upgrade abort on page 493

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

```
request chassis cluster in-service-upgrade abort
user@host> request chassis cluster in-service-upgrade abort
Exiting in-service-upgrade window
Chassis ISSU Aborted
```
request security internal-security-association refresh

Supported Platforms SRX5400, SRX5600, SRX5800

Syntax request security internal-security-association refresh

Description Activate internal IPsec so an attacker cannot gain unauthorized information.

Required Privilege Level maintenance

Related Documentation • show security internal-security-association on page 602
 • internal (Security IPsec) on page 434

List of Sample Output request security internal-security-association refresh on page 494

Output Fields When you enter this command, you are provided feedback on the status of your request.

Sample Output

request security internal-security-association refresh

user@host> request security internal-security-association refresh
request system scripts add

Supported Platforms
SRX Series

Syntax
```
request system scripts add package-name <no-copy | unlink> <master> <backup>
```

Release Information
Command introduced before Junos OS Release 9.0. The options **master** and **backup** are introduced in Junos OS Release 15.1X49-D50.

Description
CLI command to install AI-Script install packages on SRX Series devices in a chassis cluster.

Options
- **package-name**—Specify AI-Script install package name.
- **no-copy**—(Optional) Do not save a copy of the AI script package file.
- **unlink**—(Optional) Remove the AI script package after successful installation.
- **master**—(Optional) Install AI script packages on the primary node.
- **backup**—(Optional) Install AI script packages on the secondary node.

Additional Information
This command eliminates the AI script installation on both primary node and secondary node separately.

Required Privilege Level
maintenance

Related Documentation
- Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes on page 275

List of Sample Output
request system scripts add package-name on page 495
request system scripts add package-name on page 496

Sample Output

```
request system scripts add package-name

user@host> request system scripts add jais-5.0R1.0-signed.tgz master

[: -a: unexpected operator
grep: /etc/db/pkg/jais/+COMMENT: No such file or directory
Installing package '/var/tmp/jais-5.0R4.0-signed.tgz' ...
Verified jais-5.0R4.0.tgz signed by PackageProductionRSA_2016
Adding jais...
Available space: 798414 require: 1814
Installing AI-Scripts version: 5.0R4
```
Saving package file in /var/db/scripts/commit/jais-5.0R4.0-signed.tgz ...
NOTICE: uncommitted changes have been saved in
/var/db/config/juniper.conf.pre-install
ln: ///etc/rc.d/ais: Read-only file system
Model: srx5600
Model: srx5600
Linking in Junos ES manifest file.
Creating srx5800/srx5600 trend data file.
Creating SRX intelligence attachments file.
Creating SRX events attachments file.
Creating AI-Scripts FIFO
Starting AI-Scripts FIFO handler
77834: old priority 0, new priority 20
77842: old priority 0, new priority 20
RSI parameters are now being set
BIOS validation parameter is now being set
BIOS interval parameter is now being set
JMB cleanup age is now being set
JMB Event file is now being set
JMB User Event file is now being set
PHDC collect parameter is now being set
PHDC duration parameter is now being set
PHDC commands file is now being set
JMB Progress Logging parameter is now being set
iJMB generation parameters are now being set
AI-Scripts platform support flag is now being set
Interval event commands file is now being set
Interval event enabled parameter is now being set
All node log collect parameter is now being set
Disk Warning Threshold is now being set
Disk Full Threshold is now being set
RSI Lite Enabled is now being set
Removing any old files that need to be updated
Copying updated files
Restarting eventd ...
Event processing process started, pid 78147
Installation completed
Saving package file in /var/sw/pkg/jais-5.0R4.0-signed.tgz ...
Saving state for rollback ...

request system scripts add package-name

user@host> request system scripts add jais-5.0R1.0-signed.tgz backup
Pushing bundle to model
[-a: unexpected operator
grep: /etc/db/pkg/jais/+COMMENT: No such file or directory
Installing package '/var/tmp/jais-5.0R4.0-signed.tgz' ...
Verified jais-5.0R4.0.tgz signed by PackageProductionRSA_2016
Adding jais...
Available space: 2619677 require: 1814
Installing AI-Scripts version: 5.0R4
chmod: /var/db/scripts/event/cron.slax: No such file or directory
chmod: /var/db/scripts/event/bit_event.slax: No such file or directory
chmod: /var/db/scripts/event/bit_event2.slax: No such file or directory
chmod: /var/db/scripts/op/ais_bit.slax: No such file or directory
Saving package file in /var/db/scripts/commit/jais-5.0R4.0-signed.tgz ...
NOTICE: uncommitted changes have been saved in
/var/db/config/juniper.conf.pre-install
ln: ///etc/rc.d/ais: Read-only file system
Mounted jais package on /dev/md2 ...
Verified manifest signed by PackageProductionRSA_2016
Verified jais-5.0R4.0 signed by PackageProductionRSA_2016
Model: srx5600
Model: srx5600
Linking in Junos ES manifest file.
Creating srx5800/srx5600 trend data file.
Creating SRX intelligence attachments file.
Creating SRX events attachments file.
Creating AI-Scripts FIFO
Starting AI-Scripts FIFO handler
99423: old priority 0, new priority 20
99428: old priority 0, new priority 20
99429: old priority 0, new priority 20
99430: old priority 0, new priority 20
RSI parameters are now being set
BIOS validation parameter is now being set
BIOS interval parameter is now being set
JMB cleanup age is now being set
JMB Event file is now being set
JMB User Event file is now being set
PHDC collect parameter is now being set
PHDC duration parameter is now being set
PHDC commands file is now being set
JMB Progress Logging parameter is now being set
iJMB generation parameters are now being set
AI-Scripts platform support flag is now being set
Interval event commands file is now being set
Interval event enabled parameter is now being set
All node log collect parameter is now being set
Disk Warning Threshold is now being set
Disk Full Threshold is now being set
RSI Lite Enabled is now being set
chmod: /var/db/scripts/event/cron.slax: No such file or directory
chmod: /var/db/scripts/event/bit_event.slax: No such file or directory
chmod: /var/db/scripts/event/bit_event2.slax: No such file or directory
Removing any old files that need to be updated
Copying updated files
Restarting eventd ...
Event processing process started, pid 99730
Installation completed
Saving package file in /var/sw/pkg/jais-5.0R4.0-signed.tgz ...
Saving state for rollback ...
request system reboot

Supported Platforms
SRX Series, vSRX

Syntax
request system reboot <at time> <in minutes><media><message "text">

Release Information
Command introduced in Junos OS Release 10.1.
Command hypervisor option introduced in Junos OS Release 15.1X49-D10 for vSRX.
Command introduced in Junos OS Release 15.1X49-D50 for SRX1500 devices.

Description
Reboot the software.

Options
- at time (Optional)— Specify the time at which to reboot the device. You can specify time in one of the following ways:
 - now— Reboot the device immediately. This is the default.
 - +minutes— Reboot the device in the number of minutes from now that you specify.
 - yymmdthhmm— Reboot the device at the absolute time on the date you specify. Enter the year, month, day, hour (in 24-hour format), and minute.
 - hh:mm— Reboot the device at the absolute time you specify, on the current day. Enter the time in 24-hour format, using a colon (:) to separate hours from minutes.
- in minutes(Optional)— Specify the number of minutes from now to reboot the device. This option is a synonym for the at +minutes option
- media type(Optional)— Specify the boot device to boot the device from:
 - disk/internal— Reboot from the internal media. This is the default.
 - usb— Reboot from the USB storage device.
 - compact flash— Reboot from the external CompactFlash card.

NOTE: The media command option is not available on vSRX.

- message “text” (Optional)— Provide a message to display to all system users before the device reboots.

Example: request system reboot at 5 in 50 media internal message stop

Required Privilege Level
maintenance

Related Documentation
- request system software rollback (SRX Series) on page 504
request system software in-service-upgrade (Maintenance)

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, SRX345, SRX4100, SRX4200, SRX5400, SRX550M, SRX5600, SRX5800

Syntax
```
request system software in-service-upgrade image_name
<no-copy>
<no-sync>
<no-tcp-syn-check>
<no-validate>
<reboot>
<unlink>
```

Release Information
For SRX5400, SRX5600, and SRX5800 devices, command introduced in Junos OS Release 9.6 and support for `reboot` as a required parameter added in Junos OS Release 11.2R2. For SRX5400 devices, the command is introduced in Junos OS Release 12.1X46-D20. For SRX300, SRX320, SRX340, and SRX345 devices, command introduced in Junos OS Release 15.1X49-D40. For SRX1500 devices, command introduced in Junos OS Release 15.1X49-D50.

Description
The in-service software upgrade (ISSU) feature allows a chassis cluster pair to be upgraded from supported Junos OS versions with a traffic impact similar to that of redundancy group failovers. Before upgrading, you must perform failovers so that all redundancy groups are active on only one device. We recommend that graceful restart for routing protocols be enabled before you initiate an ISSU.

For SRX300, SRX320, SRX340, SRX345, and SRX550M devices, you must use the `no-sync` parameter to perform an in-band cluster upgrade (ICU). This allows a chassis cluster pair to be upgraded with a minimal service disruption of approximately 30 seconds.

For SRX1500, SRX4100, and SRX4200 devices, the `no-sync` parameter is not supported when using ISSU to upgrade. The `no-sync` option specifies that the state is not synchronized from the primary node to the secondary node.

For SRX1500 devices, the `no-tcp-syn-check` parameter is not supported when using ISSU to upgrade.

Options
- **image_name**—Specify the location and name of the software upgrade package to be installed.
- **no-copy**—(Optional) Install the software upgrade package but do not save the copies of package files.

NOTE: This option is not supported on SRX1500 devices.

- **no-sync**—(Optional) Stop the flow state from synchronizing when the old secondary node has booted with a new Junos OS image.
This parameter applies to SRX300, SRX320, SRX340, SRX345, and SRX550M devices only. It is required for an ICU.

NOTE: This option is not supported on SRX1500 devices.

- **no-tcp-syn-check**—(Optional) Create a window wherein the TCP SYN check for the incoming packets is disabled. The default value for the window is 7200 seconds (2 hours).

This parameter applies to SRX300, SRX320, SRX340, SRX345, and SRX550M devices only.

NOTE: This option is not supported on SRX1500 devices.

- **no-validate**—(Optional) Disable the configuration validation step at installation. The system behavior is similar to that of the `request system software add` command.

This parameter applies to SRX300, SRX320, SRX340, SRX345, and SRX550M devices only.

- **reboot**—(Optional) Reboot each device in the chassis cluster pair after installation is completed.

This parameter applies to SRX5400, SRX5600, and SRX5800 devices only. It is required for an ISSU. (The devices in a cluster are automatically rebooted following an ICU.)

NOTE: This option is not supported on SRX1500 devices.

- **unlink**—(Optional) Remove the software package after successful installation.

Required Privilege

Level

maintenance

Related Documentation

- request system software rollback (SRX Series) on page 504
- request system software in-service-upgrade (SRX300, SRX320, SRX340, SRX345, and SRX550M Devices) on page 501
- request system software in-service-upgrade (SRX1400) on page 502

List of Sample Output

request system software in-service-upgrade (SRX300, SRX320, SRX340, SRX345, and SRX550M Devices) on page 501

Output Fields

When you enter this command, you are provided feedback on the status of your request.
Sample Output

request system software in-service-upgrade (SRX300, SRX320, SRX340, SRX345, and SRX550M Devices)

user@host> request system software in-service-upgrade
/var/tmp/junos-srxsme-15.1I20160520_0757-domestic.tgz no-sync

ISSU: Validating package
WARNING: in-service-upgrade shall reboot both the nodes in your cluster. Please ignore any subsequent reboot request message
ISSU: start downloading software package on secondary node
Pushing /var/tmp/junos-srxsme-15.1I20160520_0757-domestic.tgz to
node0:/var/tmp/junos-srxsme-15.1I20160520_0757-domestic.tgz
Formatting alternate root (/dev/da0s1a)...
/dev/da0s1: 2510.1MB (5140780 sectors) block size 16384, fragment size 2048 using 14 cylinder groups of 183.62MB, 11752 blks, 23552 inodes.
super-block backups (for fsck -b #) at:
 32, 376096, 752160, 1128224, 1504288, 1880352, 2256416, 2632480, 3008544, 3384608, 3760672, 4136736, 4512800, 4888864
Installing package
'/altroot/cf/packages/install-tmp/junos-15.1I20160520_0757-domestic' ...
Verified junos-boot-srxsme-15.1I20160520_0757.tgz signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256
Verified junos-srxsme-15.1I20160520_0757-domestic signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256

WARNING: The software that is being installed has limited support.
WARNING: Run 'file show /etc/notices/unsupported.txt' for details.

Verified junos-boot-srxsme-15.1I20160520_0757.tgz signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256
Verified junos-srxsme-15.1I20160520_0757-domestic signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256
JUNOS 15.1I20160520_0757 will become active at next reboot
WARNING: A reboot is required to load this software correctly
WARNING: Use the 'request system reboot' command
WARNING: when software installation is complete

Saving state for rollback ...
ISSU: finished upgrading on secondary node node0
ISSU: start upgrading software package on primary node
Formatting alternate root (/dev/da0s1a)...
/dev/da0s1: 2510.1MB (5140780 sectors) block size 16384, fragment size 2048 using 14 cylinder groups of 183.62MB, 11752 blks, 23552 inodes.
super-block backups (for fsck -b #) at:
 32, 376096, 752160, 1128224, 1504288, 1880352, 2256416, 2632480, 3008544, 3384608, 3760672, 4136736, 4512800, 4888864
Installing package
'/altroot/cf/packages/install-tmp/junos-15.1I20160520_0757-domestic' ...
Verified junos-boot-srxsme-15.1I20160520_0757.tgz signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256
Verified junos-srxsme-15.1I20160520_0757-domestic signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256

WARNING: The software that is being installed has limited support.
WARNING: Run 'file show /etc/notices/unsupported.txt' for details.

Verified junos-boot-srxsme-15.1I20160520_0757.tgz signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256
Verified junos-srxsme-15.1I20160520_0757-domestic signed by
PackageDevelopmentEc_2016 method ECDSA256+SHA256
Verified junos-srxsme-15.1I20160520_0757-domestic signed by PackageDevelopmentEc_2016 method ECDSA256+SHA256
JUNOS 15.1I20160520_0757 will become active at next reboot
WARNING: A reboot is required to load this software correctly
WARNING: Use the 'request system reboot' command
WARNING: when software installation is complete
cp: cannot overwrite directory /altroot/cf/etc/ssh with non-directory /cf/etc/ssh
Saving state for rollback ...
ISSU: failover all redundancy-groups 1...n to primary node
Successfully reset all redundancy-groups priority back to configured priority.
Successfully reset all redundancy-groups priority back to configured priority.
error: Command failed. None of the redundancy-groups has been failed over.
Some redundancy-groups' priority on node1 are 0.
e.g.: priority of redundancy-groups-1 on node1 is 0.
ISSU: failover all redundancy-groups 1...n to primary node
Successfully reset all redundancy-groups priority back to configured priority.
Shutdown NOW!
ISSU: Waiting for secondary node node0 to reboot.
ISSU: node 0 went down
ISSU: Waiting for node 0 to come up
ISSU: node 0 came up
ISSU: secondary node node0 booted up.
ISSU: failover all redundancy-groups 1...n to remote node, before reboot.
Successfully reset all redundancy-groups priority back to configured priority.
Shutdown NOW!
{primary:node1}
user@host>

*** FINAL System shutdown message from user@host ***

System going down IMMEDIATELY

Sample Output

request system software in-service-upgrade (SRX1400)

user@host> request system software in-service-upgrade /var/tmp/junos-srx1k3k-11.2R2.5-domestic.tgz no-copy reboot
Chassis ISSU Started
node0:
--
Chassis ISSU Started
ISSU: Validating Image
Initiating in-service-upgrade
node0:
--
Initiating in-service-upgrade
Checking compatibility with configuration
mgd: commit complete
Validation succeeded
ISSU: Preparing Backup RE
Finished upgrading secondary node node0
Rebooting Secondary Node
node0:
--
Shutdown NOW!
[pid 3257]
ISSU: Backup RE Prepare Done
Waiting for node0 to reboot.
node0 booted up.
Waiting for node0 to become secondary
node0 became secondary.
Waiting for node0 to be ready for failover
ISSU: Preparing Daemons
Secondary node0 ready for failover.
Failing over all redundancy-groups to node0
ISSU: Preparing for Switchover
Initiated failover for all the redundancy groups to node1
Waiting for node0 take over all redundancy groups

Exiting in-service-upgrade window

node0:

--
Exiting in-service-upgrade window
Exiting in-service-upgrade window
Chassis ISSU Aborted

--

Chassis ISSU Ended
ISSU completed successfully, rebooting...
Shutdown NOW!
[pid 4294]
request system software rollback (SRX Series)

Supported Platforms SRX Series, vSRX

Syntax request system software rollback
 <node-id>

 Command introduced in Junos OS Release 15.1X49-D50 for SRX1500 devices.

Description Revert to the software that was loaded at the last successful request system software add command.

Options node-id—Identification number of the chassis cluster node. It can be 0 or 1.

Required Privilege Level maintenance

Related Documentation • request system reboot on page 498
set chassis cluster cluster-id node node-number reboot

Supported Platforms
SRX Series, vSRX

Syntax
set chassis cluster cluster-id cluster-id node node-number reboot

Release Information
Support for extended cluster identifiers (more than 15 identifiers) added in Junos OS Release 12.1X45-D10.

Description
Sets the chassis cluster identifier (ID) and node ID on each device, and reboots the devices to enable clustering. The system uses the chassis cluster ID and chassis cluster node ID to apply the correct configuration for each node (for example, when you use the `apply-groups` command to configure the chassis cluster management interface). The chassis cluster ID and node ID statements are written to the EPROM, and the statements take effect when the system is rebooted.

Setting a cluster ID to 0 is equivalent to disabling a cluster. A cluster ID greater than 15 can only be set when the fabric and control link interfaces are connected back-to-back.

Options
- **cluster-id cluster-id**—Identifies the cluster within the Layer 2 domain.
 Range: 0 through 255
- **node node**—Identifies a node within a cluster.
 Range: 0 through 1

Required Privilege Level
maintenance

Related Documentation
- Example: Setting the Chassis Cluster Node ID and Cluster ID on page 90
- *Understanding the Interconnect Logical System and Logical Tunnel Interfaces*
- Example: Configuring Logical Systems in an Active/Passive Chassis Cluster (Master Administrators Only)

Output Fields
When you enter this command, you are provided feedback on the status of your request.
show chassis cluster control-plane statistics

Supported Platforms
SRX Series, vSRX

Syntax
show chassis cluster control-plane statistics

Release Information

Description
Display information about chassis cluster control plane statistics.

Required Privilege Level
view

Related Documentation
• clear chassis cluster control-plane statistics on page 479

List of Sample Output
show chassis cluster control-plane statistics on page 507
show chassis cluster control-plane statistics (SRX5000 Line Devices) on page 507

Output Fields
Table 40 on page 506 lists the output fields for the show chassis cluster control-plane statistics command. Output fields are listed in the approximate order in which they appear.

Table 40: show chassis cluster control-plane statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control link statistics</td>
<td>Statistics of the control link used by chassis cluster traffic. Statistics for Control link 1 are displayed when you use dual control links (SRX5600 and SRX5800 devices only).</td>
</tr>
<tr>
<td></td>
<td>• Heartbeat packets sent—Number of heartbeat messages sent on the control link.</td>
</tr>
<tr>
<td></td>
<td>• Heartbeat packets received—Number of heartbeat messages received on the control link.</td>
</tr>
<tr>
<td></td>
<td>• Heartbeat packet errors—Number of heartbeat packets received with errors on the control link.</td>
</tr>
<tr>
<td>Fabric link statistics</td>
<td>Statistics of the fabric link used by chassis cluster traffic. Statistics for Child Link 1 are displayed when you use dual fabric links.</td>
</tr>
<tr>
<td></td>
<td>• Probes sent—Number of probes sent on the fabric link.</td>
</tr>
<tr>
<td></td>
<td>• Probes received—Number of probes received on the fabric link.</td>
</tr>
<tr>
<td>Switch fabric link statistics</td>
<td>Statistics of the switch fabric link used by chassis cluster traffic.</td>
</tr>
<tr>
<td></td>
<td>• Probe state—State of the probe, UP or DOWN.</td>
</tr>
<tr>
<td></td>
<td>• Probes sent—Number of probes sent.</td>
</tr>
<tr>
<td></td>
<td>• Probes received—Number of probes received.</td>
</tr>
<tr>
<td></td>
<td>• Probe recv error—Error in receiving probe.</td>
</tr>
<tr>
<td></td>
<td>• Probe send error—Error in sending probe.</td>
</tr>
</tbody>
</table>
Sample Output

show chassis cluster control-plane statistics

user@host> show chassis cluster control-plane statistics
Control link statistics:
 Control link 0:
 Heartbeat packets sent: 11646
 Heartbeat packets received: 8343
 Heartbeat packet errors: 0

Fabric link statistics:
 Child link 0
 Probes sent: 11644
 Probes received: 8266
 Child link 1
 Probes sent: 0
 Probes received: 0

Sample Output

show chassis cluster control-plane statistics (SRX5000 Line Devices)

user@host> show chassis cluster control-plane statistics
Control link statistics:
 Control link 0:
 Heartbeat packets sent: 2061982
 Heartbeat packets received: 2060367
 Heartbeat packet errors: 0
 Control link 1:
 Heartbeat packets sent: 2061982
 Heartbeat packets received: 0
 Heartbeat packet errors: 0

Fabric link statistics:
 Child link 0
 Probes sent: 3844342
 Probes received: 3843841
 Child link 1
 Probes sent: 0
 Probes received: 0
show chassis cluster data-plane interfaces

Supported Platforms SRX Series, vSRX

Syntax show chassis cluster data-plane interfaces

Release Information Command introduced in Junos OS Release 10.2.

Description Display the status of the data plane interface (also known as a fabric interface) in a chassis cluster configuration.

Required Privilege Level view

Related Documentation
- cluster (Chassis) on page 411

List of Sample Output show chassis cluster data-plane interfaces on page 508

Output Fields Table 41 on page 508 lists the output fields for the show chassis cluster data-plane interfaces command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0/fab1</td>
<td>Name of the logical fabric interface.</td>
</tr>
<tr>
<td></td>
<td>• Name—Name of the physical Ethernet interface.</td>
</tr>
<tr>
<td></td>
<td>• Status—State of the fabric interface: up or down.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster data-plane interfaces

```
user@host> show chassis cluster data-plane interfaces
fab0:
    Name     Status
    ge-2/1/9 up
    ge-2/2/5 up
fab1:
    Name     Status
    ge-8/1/9 up
    ge-8/2/5 up
```
show chassis cluster data-plane statistics

Supported Platforms
SRX Series, vSRX

Syntax
```
show chassis cluster data-plane statistics
```

Release Information
Command introduced in Junos OS Release 9.3.

Description
Display information about chassis cluster data plane statistics.

Required Privilege
view

Related Documentation
- [clear chassis cluster data-plane statistics on page 480](#)

List of Sample Output
```
show chassis cluster data-plane statistics on page 510
```

Output Fields
Table 42 on page 510 lists the output fields for the `show chassis cluster data-plane statistics` command. Output fields are listed in the approximate order in which they appear.
Table 42: show chassis cluster data-plane statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| Services Synchronized | • Service name—Name of the service.
• Rtos sent—Number of runtime objects (RTOs) sent.
• Rtos received—Number of RTOs received.
• Translation context—Messages synchronizing Network Address Translation (NAT) translation context.
• Incoming NAT—Messages synchronizing incoming Network Address Translation (NAT) service.
• Resource manager—Messages synchronizing resource manager groups and resources.
• Session create—Messages synchronizing session creation.
• Session close—Messages synchronizing session close.
• Session change—Messages synchronizing session change.
• Gate create—Messages synchronizing creation of pinholes (temporary openings in the firewall).
• Session ageout refresh request—Messages synchronizing request session after age-out.
• Session ageout refresh reply—Messages synchronizing reply session after age-out.
• IPsec VPN—Messages synchronizing VPN session.
• Firewall user authentication—Messages synchronizing firewall user authentication session.
• MGCP ALG—Messages synchronizing MGCP ALG sessions.
• H323 ALG—Messages synchronizing H.323 ALG sessions.
• SIP ALG—Messages synchronizing SIP ALG sessions.
• SCCP ALG—Messages synchronizing SCCP ALG sessions.
• PPTP ALG—Messages synchronizing PPTP ALG sessions.
• RTSP ALG—Messages synchronizing RTSP ALG sessions. |

Sample Output

show chassis cluster data-plane statistics

```
user@host> show chassis cluster data-plane statistics
Services Synchronized:
        Service name            RTOs sent  RTOs received
              Translation context  0          0
               Incoming NAT        0          0
          Resource manager       0          0
            Session create       0          0
             Session close       0          0
               Session change    0          0
             Gate create         0          0
  Session ageout refresh requests  0          0
     Session ageout refresh replies  0          0
             IPsec VPN           0          0
      Firewall user authentication  0          0
              MGCP ALG           0          0
             H323 ALG           0          0
              SIP ALG           0          0
             SCCP ALG           0          0
             PPTP ALG           0          0
              RTSP ALG           0          0
```
show chassis cluster ethernet-switching interfaces

Supported Platforms SRX1500, SRX300, SRX320, SRX340, SRX345, SRX550M, vSRX

Syntax show chassis cluster ethernet-switching interfaces

Description Display the status of the switch fabric interfaces (swfab interfaces) in a chassis cluster.

Required Privilege Level view

Related Documentation • cluster (Chassis) on page 411
 • Ethernet Switching and Layer 2 Transparent Mode Feature Guide for Security Devices

List of Sample Output show chassis cluster ethernet-switching interfaces on page 512

Output Fields Table 43 on page 512 lists the output fields for the show chassis cluster ethernet-switching interfaces command. Output fields are listed in the approximate order in which they appear.

Table 43: show chassis cluster ethernet-switching interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>swfab switch fabric interface-name</td>
<td>Name of the switch fabric interface.</td>
</tr>
<tr>
<td></td>
<td>• Name—Name of the physical interface.</td>
</tr>
<tr>
<td></td>
<td>• Status—State of the switch fabric interface: up or down.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster ethernet-switching interfaces

user@host> show chassis cluster ethernet-switching interfaces
swfab0:
 Name Status
 ge-0/0/9 up
 ge-0/0/10 up
swfab1:
 Name Status
 ge-7/0/9 up
 ge-7/0/10 up
show chassis cluster ethernet-switching status

Supported Platforms
SRX1500, SRX300, SRX320, SRX340, SRX345, SRX550M, vSRX

Syntax
show chassis cluster ethernet-switching status

Release Information
Command introduced in Junos OS Release 11.1.

Description
Display the Ethernet switching status of the chassis cluster.

Required Privilege Level
view

Related Documentation
• cluster (Chassis) on page 411
• Ethernet Switching and Layer 2 Transparent Mode Feature Guide for Security Devices

List of Sample Output
show chassis cluster ethernet-switching status on page 514

Output Fields
Table 44 on page 513 lists the output fields for the show chassis cluster ethernet-switching status command. Output fields are listed in the approximate order in which they appear.

Table 44: show chassis cluster ethernet-switching status Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster ID</td>
<td>ID number (1-255) of a cluster. Setting a cluster ID to 0 is equivalent to disabling a cluster. A cluster ID greater than 15 can only be set when the fabric and control link interfaces are connected back-to-back.</td>
</tr>
<tr>
<td>Redundancy-Group</td>
<td>You can create up to 128 redundancy groups in the chassis cluster.</td>
</tr>
<tr>
<td>Node name</td>
<td>Node (device) in the chassis cluster (node0 or node1).</td>
</tr>
<tr>
<td>Priority</td>
<td>Assigned priority for the redundancy group on that node.</td>
</tr>
<tr>
<td>Status</td>
<td>State of the redundancy group (Primary, Secondary, Lost, or Unavailable).</td>
</tr>
</tbody>
</table>

- **Primary**—Redundancy group is active and passing traffic.
- **Secondary**—Redundancy group is passive and not passing traffic.
- **Lost**—Node loses contact with the other node through the control link. Most likely to occur when both nodes are in a cluster and there is a control link failure, one node cannot exchange heartbeats, or when the other node is rebooted.
- **Unavailable**—Node has not received a single heartbeat over the control link from the other node since the other node booted up. Most likely to occur when one node boots up before the other node, or if only one node is present in the cluster.
Table 44: show chassis cluster ethernet-switching status Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preempt</td>
<td>• Yes: Mastership can be preempted based on priority.</td>
</tr>
<tr>
<td></td>
<td>• No: Change in priority will not preempt mastership.</td>
</tr>
<tr>
<td>Manual failover</td>
<td>• Yes: Mastership is set manually through the CLI.</td>
</tr>
<tr>
<td></td>
<td>• No: Mastership is not set manually through the CLI.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster ethernet-switching status

user@host> show chassis cluster ethernet-switching status
Cluster ID: 10

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>1</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>0</td>
<td>lost</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Switch fabric link statistics:

 - Probe state: DOWN
 - Probes sent: 8145
 - Probes received: 8013
 - Probe recv errors: 0
 - Probe send errors: 0
show chassis cluster information

Supported Platforms
SRX Series, vSRX

Syntax
`show chassis cluster information`

Release Information
Command introduced in Junos OS Release 12.1X47-D10.

Description
Display chassis cluster messages. The messages indicate each node's health condition and details of the monitored failure.

Required Privilege
`view`

Related Documentation
- show chassis cluster status on page 535

List of Sample Output
show chassis cluster information on page 515
show chassis cluster information (Monitoring Abnormal Case) on page 516

Output Fields
Table 45 on page 515 lists the output fields for the `show chassis cluster information` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>Node (device) in the chassis cluster (node0 or node1).</td>
</tr>
</tbody>
</table>

Redundancy Group Information
- Redundancy Group—ID number (0 - 255) of a redundancy group in the cluster.
- Current State—State of the redundancy group: `primary`, `secondary`, `hold`, or `secondary-hold`.
- Weight—Relative importance of the redundancy group.
- Time—Time when the redundancy group changed the state.
- From—State of the redundancy group before the change.
- To—State of the redundancy group after the change.
- Reason—Reason for the change of state of the redundancy group.

Chassis cluster LED information
- Current LED color—Current color state of the LED.
- Last LED change reason—Reason for change of state of the LED.

Sample Output

```
user@host> show chassis cluster information

node0:
--------------------------------------------------------------------------
```

Copyright © 2017, Juniper Networks, Inc.
Redundancy Group Information:

Redundancy Group 0, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 27 17:44:19</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Mar 27 17:44:27</td>
<td>secondary</td>
<td>primary</td>
<td>Better priority (200/200)</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 27 17:44:19</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Mar 27 17:44:27</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 27 17:44:19</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Mar 27 17:44:27</td>
<td>secondary</td>
<td>primary</td>
<td>Remote yield (0/0)</td>
</tr>
<tr>
<td>Mar 27 17:50:24</td>
<td>secondary</td>
<td>primary</td>
<td>Preempt/yield (100/200)</td>
</tr>
<tr>
<td>Mar 27 17:50:25</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
- Current LED color: Green
- Last LED change reason: No failures

Sample Output

show chassis cluster information (Monitoring Abnormal Case)

user@host> show chassis cluster information
The following output is specific to monitoring abnormal (unhealthy) case.
node0:

Redundancy Group Information:

Redundancy Group 0, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:07:38</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Apr 1 11:07:41</td>
<td>secondary</td>
<td>primary</td>
<td>Only node present</td>
</tr>
<tr>
<td>Apr 1 11:29:20</td>
<td>primary</td>
<td>secondary-hold</td>
<td>Manual failover</td>
</tr>
<tr>
<td>Apr 1 11:34:20</td>
<td>secondary-hold</td>
<td>secondary</td>
<td>Ready to become secondary</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: primary, Weight: 0

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:07:38</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Apr 1 11:07:41</td>
<td>secondary</td>
<td>primary</td>
<td>Only node present</td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:07:38</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Apr 1 11:07:41</td>
<td>secondary</td>
<td>primary</td>
<td>Only node present</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
Current LED color: Amber
Last LED change reason: Monitored objects are down

Failure Information:

IP Monitoring Failure Information:
Redundancy Group 1, Monitoring Status: Failed
IP Address Status Reason
1.1.1.1 Unreachable redundand-group state unknown

node1:

Redundancy Group Information:

Redundancy Group 0, Current State: primary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:08:40</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
<tr>
<td>Apr 1 11:08:41</td>
<td>secondary</td>
<td>primary</td>
<td>Remote is in secondary hold</td>
</tr>
</tbody>
</table>

Redundancy Group 1, Current State: secondary, Weight: 0

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:08:40</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Redundancy Group 2, Current State: secondary, Weight: 255

<table>
<thead>
<tr>
<th>Time</th>
<th>From</th>
<th>To</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1 11:08:40</td>
<td>hold</td>
<td>secondary</td>
<td>Hold timer expired</td>
</tr>
</tbody>
</table>

Chassis cluster LED information:
Current LED color: Amber
Last LED change reason: Monitored objects are down
Failure Information:

IP Monitoring Failure Information:
Redundancy Group 1, Monitoring Status: Failed

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Status</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1</td>
<td>Unreachable</td>
<td>redundancy-group state unknown</td>
</tr>
</tbody>
</table>
show chassis cluster information configuration-synchronization

Supported Platforms
SRX Series, vSRX

Syntax
```
show chassis cluster information configuration-synchronization
```

Release Information
Command introduced in Junos OS Release 12.1X47-D10.

Description
Display chassis cluster messages. The messages indicate the redundancy mode, automatic synchronization status, and if automatic synchronization is enabled on the device.

Required Privilege Level
view

Related Documentation
- Understanding Automatic Chassis Cluster Synchronization Between Primary and Secondary Nodes on page 275
- NTP Time Synchronization on SRX Series Devices on page 277
- Example: Simplifying Network Management by Synchronizing the Primary and Backup Nodes with NTP on page 278
- request chassis cluster configuration-synchronize on page 487

List of Sample Output
show chassis cluster information configuration-synchronization on page 520

Output Fields
Table 46 on page 519 lists the output fields for the `show chassis cluster information configuration-synchronization` command. Output fields are listed in the approximate order in which they appear.

Table 46: show chassis cluster information configuration-synchronization Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node name</td>
<td>Node (device) in the chassis cluster (node0 or node1).</td>
</tr>
<tr>
<td>Status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Activation status—State of automatic configuration synchronization: Enabled or Disabled.</td>
</tr>
<tr>
<td></td>
<td>• Last sync operation—Status of the last synchronization.</td>
</tr>
<tr>
<td></td>
<td>• Last sync result—Result of the last synchronization.</td>
</tr>
<tr>
<td></td>
<td>• Last sync mgd messages—Management daemon messages of the last synchronization.</td>
</tr>
<tr>
<td>Events</td>
<td>The timestamp of the event, the automatic configuration synchronization status, and the number of synchronization attempts.</td>
</tr>
</tbody>
</table>
Sample Output

guest@host> show chassis cluster information configuration-synchronization
	node0:

Configuration Synchronization:
 Status:
 Activation status: Enabled
 Last sync operation: Auto-Sync
 Last sync result: Not needed
 Last sync mgd messages:
 Events:

node1:

Configuration Synchronization:
 Status:
 Activation status: Enabled
 Last sync operation: Auto-Sync
 Last sync result: Succeeded
 Last sync mgd messages:
 mgd: rcp: /config/juniper.conf: No such file or directory
 Network security daemon: warning: You have enabled/disabled inet6 flow.
 mgd: commit complete
 Events:
show chassis cluster information issu

Supported Platforms
SRX1500, SRX5400, SRX5600, SRX5800

Syntax
show chassis cluster information issu

Release Information
Command introduced in Junos OS Release 12.1X47-D10.

Description
Display chassis cluster messages. The messages indicate the progress of the in-service software upgrade (ISSU).

Required Privilege Level
view

Related Documentation
- show chassis cluster status on page 535

List of Sample Output
show chassis cluster information issu on page 521

Output Fields
Table 47 on page 521 lists the output fields for the show chassis cluster information issu command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node name</td>
<td>Node (device) in the chassis cluster (node0 or node1).</td>
</tr>
<tr>
<td>CS Prereq</td>
<td>Status of all cold synchronization prerequisites:</td>
</tr>
<tr>
<td></td>
<td>- if_state sync—Status of if_state synchronization.</td>
</tr>
<tr>
<td></td>
<td>- policy data sync—Status of policy data synchronization.</td>
</tr>
<tr>
<td></td>
<td>- cp ready—Status of the central point.</td>
</tr>
<tr>
<td></td>
<td>- VPN data sync—Status of the VPN data synchronization.</td>
</tr>
<tr>
<td>CS RTO sync</td>
<td>Status of cold synchronization runtime objects.</td>
</tr>
<tr>
<td>CS postreq</td>
<td>Status of cold synchronization postrequirements.</td>
</tr>
</tbody>
</table>

Sample Output

display chassis cluster information issu

```
user@host> show chassis cluster information issu
node0:
--------------------------------------------------------------------------
Cold Synchronization Progress:
  CS Prereq                     10 of 10 SPUs completed
```

Copyright © 2017, Juniper Networks, Inc.
1. if_state sync
10 SPUs completed

2. fabric link
10 SPUs completed

3. policy data sync
10 SPUs completed

4. cp ready
10 SPUs completed

5. VPN data sync
10 SPUs completed

CS RTO sync
10 of 10 SPUs completed

CS Postreq
10 of 10 SPUs completed

node1:

Cold Synchronization Progress:

<table>
<thead>
<tr>
<th>CS Prereq</th>
<th>10 of 10 SPUs completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. if_state sync</td>
<td>10 SPUs completed</td>
</tr>
<tr>
<td>2. fabric link</td>
<td>10 SPUs completed</td>
</tr>
<tr>
<td>3. policy data sync</td>
<td>10 SPUs completed</td>
</tr>
<tr>
<td>4. cp ready</td>
<td>10 SPUs completed</td>
</tr>
<tr>
<td>5. VPN data sync</td>
<td>10 SPUs completed</td>
</tr>
</tbody>
</table>

CS RTO sync
10 of 10 SPUs completed

CS Postreq
10 of 10 SPUs completed
show chassis cluster interfaces

Supported Platforms SRX Series, vSRX

Syntax show chassis cluster interfaces

Description Display the status of the control interface in a chassis cluster configuration.

Required Privilege view

Related Documentation • cluster (Chassis) on page 411

List of Sample Output show chassis cluster interfaces on page 524
show chassis cluster interfaces (SRX5000 line devices) on page 525
show chassis cluster interfaces on page 526
show chassis cluster interfaces(SRX5400, SRX5600, and SRX5800 Devices with SRX5000 line SRX5K-SCB3 [SCB3] with Enhanced Midplanes and SRX5K-MPC3-100G10G [IOC3] or SRX5K-MPC3-40G10G [IOC3]) on page 526

Output Fields Table 48 on page 523 lists the output fields for the show chassis cluster interfaces command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control link status</td>
<td>State of the chassis cluster control interface: up or down.</td>
</tr>
</tbody>
</table>
| **Control interfaces** | • Index—Index number of the chassis cluster control interface.
 • Name—Name of the chassis cluster control interface.
 • Monitored-Status—Monitored state of the interface: up or down.
 • Internal SA—State of the internal SA option on the chassis cluster control link: enabled or disabled.
 NOTE: This field is available only on SRX5000 line devices.
 • Security—State of MACsec on chassis cluster control interfaces. |
| **Fabric link status** | State of the fabric interface: up or down. |
Table 48: show chassis cluster interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric interfaces</td>
<td>• Name—Name of the fabric interface.</td>
</tr>
<tr>
<td></td>
<td>• Child-interface—Name of the child fabric interface.</td>
</tr>
<tr>
<td></td>
<td>• Status—State of the interface: up or down.</td>
</tr>
<tr>
<td></td>
<td>• Security—State of MACsec on chassis cluster fabric interfaces.</td>
</tr>
<tr>
<td>Redundant-ethernet Information</td>
<td>• Name—Name of the redundant Ethernet interface.</td>
</tr>
<tr>
<td></td>
<td>• Status—State of the interface: up or down.</td>
</tr>
<tr>
<td></td>
<td>• Redundancy-group—Identification number (1–255) of the redundancy group associated with the redundant Ethernet interface.</td>
</tr>
<tr>
<td>Redundant-pseudo-interface Information</td>
<td>• Name—Name of the redundant pseudointerface.</td>
</tr>
<tr>
<td></td>
<td>• Status—State of the redundant pseudointerface: up or down.</td>
</tr>
<tr>
<td></td>
<td>• Redundancy-group—Identification number (1–255) of the redundancy group associated with the redundant pseudointerface.</td>
</tr>
<tr>
<td>Interface Monitoring</td>
<td>• Interface—Name of the interface to be monitored.</td>
</tr>
<tr>
<td></td>
<td>• Weight—Relative importance of the interface to redundancy group operation.</td>
</tr>
<tr>
<td></td>
<td>• Status—State of the interface: up or down.</td>
</tr>
<tr>
<td></td>
<td>• Redundancy-group—Identification number of the redundancy group associated with the interface.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster interfaces

```
user@host> show chassis cluster interfaces
Control link status: Up

Control interfaces:
  Index  Interface  Monitored-Status  Security
    0      em0       Up               Disabled
    1      em1       Down             Disabled

Fabric link status: Up

Fabric interfaces:
  Name    Child-interface  Status  Security
  fab0    ge-0/1/0         Up      Disabled
  fab0    ge-6/1/0         Up      Disabled

Redundant-ethernet Information:
  Name    Status  Redundancy-group
  reth0   Up      1
  reth1   Up      2
  reth2   Down    Not configured
  reth3   Down    Not configured
  reth4   Down    Not configured
  reth5   Down    Not configured
  reth6   Down    Not configured
```
Sample Output

show chassis cluster interfaces (SRX5000 line devices)

```
user@host> show chassis cluster interfaces
Control link status: Up

<table>
<thead>
<tr>
<th>Control interfaces:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Fabric link status: Up

<table>
<thead>
<tr>
<th>Fabric interfaces:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>fab0</td>
</tr>
<tr>
<td>fab0</td>
</tr>
<tr>
<td>fab1</td>
</tr>
<tr>
<td>fab1</td>
</tr>
</tbody>
</table>

Redundant-ethernet Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>reth1</td>
<td>Up</td>
<td>2</td>
</tr>
<tr>
<td>reth2</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth3</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth4</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth5</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth6</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth7</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth8</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth9</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth10</td>
<td>Down</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth11</td>
<td>Down</td>
<td>Not configured</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>1</td>
</tr>
</tbody>
</table>

Interface Monitoring:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Weight</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/1/9</td>
<td>100</td>
<td>Up</td>
<td>0</td>
</tr>
<tr>
<td>ge-0/1/9</td>
<td>100</td>
<td>Up</td>
<td></td>
</tr>
</tbody>
</table>
```
Sample Output

show chassis cluster interfaces

```
user@host> show chassis cluster interfaces
The following output is specific to fabric monitoring failure:

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>fxp1</td>
<td>Up</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Down

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>ge-0/0/2</td>
<td>Down/Down</td>
<td>Disabled</td>
</tr>
<tr>
<td>fab1</td>
<td>ge-9/0/2</td>
<td>Up/Up</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Sample Output

show chassis cluster interfaces

(SRX5400, SRX5600, and SRX5800 Devices with SRX5000 line SRX5K-SCB3 [SCB3] with Enhanced Midplanes and SRX5K-MPC3-10G10G [IOC3] or SRX5K-MPC3-40G10G [IOC3])

```
user@host> show chassis cluster interfaces
The following output is specific to SRX5400, SRX5600, and SRX5800 devices in a chassis cluster cluster, when the PICs containing fabric links on the SRX5K-MPC3-40G10G (IOC3) are powered off to turn on alternate PICs. If no alternate fabric links are configured on the PICs that are turned on, RTO synchronous communication between the two nodes stops and the chassis cluster session state will not back up, because the fabric link is missing.

Control link status: Up

Control interfaces:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Monitored-Status</th>
<th>Internal-SA</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>em0</td>
<td>Up</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>em1</td>
<td>Down</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Fabric link status: Down

Fabric interfaces:

<table>
<thead>
<tr>
<th>Name</th>
<th>Child-interface</th>
<th>Status</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>fab0</td>
<td>&lt;&lt;&lt; fab child missing once PIC off lined</td>
<td>Disabled</td>
<td></td>
</tr>
</tbody>
</table>
```

Copyright © 2017, Juniper Networks, Inc.
<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>reth0</td>
<td>Up</td>
<td>Not configured</td>
</tr>
<tr>
<td>reth1</td>
<td>Down</td>
<td>1</td>
</tr>
</tbody>
</table>

Redundant-pseudo-interface Information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Redundancy-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>Up</td>
<td>0</td>
</tr>
</tbody>
</table>
show chassis cluster ip-monitoring status redundancy-group

Supported Platforms: SRX Series, vSRX

Syntax: show chassis cluster ip-monitoring status<redundancy-group group-number>

Description: Display the status of all monitored IP addresses for a redundancy group.

Options:
- none—Display the status of monitored IP addresses for all redundancy groups on the node.
- redundancy-group group-number—Display the status of monitored IP addresses under the specified redundancy group.

Required Privilege Level: view

Related Documentation:
- clear chassis cluster failover-count

List of Sample Output:
- show chassis cluster ip-monitoring status on page 529
- show chassis cluster ip-monitoring status redundancy-group on page 530

Output Fields:
Table 49 on page 528 lists the output fields for the show chassis cluster ip-monitoring status command.

Table 49: show chassis cluster ip-monitoring status Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy-group</td>
<td>ID number (0 - 255) of a redundancy group in the cluster.</td>
</tr>
<tr>
<td>Global threshold</td>
<td>Failover value for all IP addresses monitored by the redundancy group.</td>
</tr>
<tr>
<td>Current threshold</td>
<td>Value equal to the global threshold minus the total weight of the unreachable IP address.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Monitored IP address in the redundancy group.</td>
</tr>
<tr>
<td>Status</td>
<td>Current reachability state of the monitored IP address.</td>
</tr>
<tr>
<td></td>
<td>Values for this field are: reachable, unreachable, and unknown. The status is “unknown” if Packet Forwarding Engines (PFEs) are not yet up and running.</td>
</tr>
<tr>
<td>Failure count</td>
<td>Number of attempts to reach an IP address.</td>
</tr>
</tbody>
</table>
Table 49: show chassis cluster ip-monitoring status Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason</td>
<td>Explanation for the reported status. See Table 50 on page 529.</td>
</tr>
<tr>
<td>Weight</td>
<td>Combined weight (0 - 255) assigned to all monitored IP addresses. A higher weight value indicates greater importance.</td>
</tr>
</tbody>
</table>

Expanded reason output fields for unreachable IP addresses added in Junos OS Release 10.1. You might see any of the following reasons displayed.

Table 50: show chassis cluster ip-monitoring status redundancy group Reason Fields

<table>
<thead>
<tr>
<th>Reason</th>
<th>Reason Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No route to host</td>
<td>The router could not resolve the ARP, which is needed to send the ICMP packet to the host with the monitored IP address.</td>
</tr>
<tr>
<td>No auxiliary IP found</td>
<td>The redundant Ethernet interface does not have an auxiliary IP address configured.</td>
</tr>
<tr>
<td>Reth child not up</td>
<td>A child interface of a redundant Ethernet interface is down.</td>
</tr>
<tr>
<td>redundancy-group state unknown</td>
<td>Unable to obtain the state (primary, secondary, secondary-hold, disable) of a redundancy-group.</td>
</tr>
<tr>
<td>No reth child MAC address</td>
<td>Could not extract the MAC address of the redundant Ethernet child interface.</td>
</tr>
<tr>
<td>Secondary link not monitored</td>
<td>The secondary link might be down (the secondary child interface of a redundant Ethernet interface is either down or non-functional).</td>
</tr>
<tr>
<td>Unknown</td>
<td>The IP address has just been configured and the router still does not know the status of this IP.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Do not know the exact reason for the failure.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster ip-monitoring status

```
user@host> show chassis cluster ip-monitoring status
node0:--------------------------------------------------------------------------
                     Redundancy group: 1
                     Global threshold: 200
                     Current threshold: -120

  IP address    Status  Failure count  Reason  Weight
  10.254.5.44    reachable   0         n/a      220
  2.2.2.1        reachable   0         n/a      100
```
node1:

Redundancy group: 1
Global threshold: 200
Current threshold: -120

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.254.5.44</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>220</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td>100</td>
</tr>
</tbody>
</table>

Sample Output

```bash
show chassis cluster ip-monitoring status redundancy-group
```

```
user@host> show chassis cluster ip-monitoring status redundancy-group
node0:

Redundancy group: 1

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.254.5.44</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1.1.1.5</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

node1:

Redundancy group: 1

<table>
<thead>
<tr>
<th>IP address</th>
<th>Status</th>
<th>Failure count</th>
<th>Reason</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.254.5.44</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1.1.1.5</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>reachable</td>
<td>0</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>
show chassis cluster statistics

Supported Platforms  SRX Series, vSRX

Syntax  show chassis cluster statistics


Description  Display information about chassis cluster services and interfaces.

Required Privilege  view

Related Documentation  • clear chassis cluster statistics on page 485

List of Sample Output  show chassis cluster statistics on page 532
show chassis cluster statistics (SRX5000 Line Devices) on page 533
show chassis cluster statistics (SRX5000 Line Devices) on page 534

Output Fields  Table 51 on page 531 lists the output fields for the show chassis cluster statistics command. Output fields are listed in the approximate order in which they appear.

Table 51: show chassis cluster statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control link statistics</td>
<td>Statistics of the control link used by chassis cluster traffic. Statistics for Control link 1 are displayed when you use dual control links (SRX5000 lines only). Note that the output for the SRX5000 lines will always show Control link 0 and Control link 1 statistics, even though only one control link is active or working.</td>
</tr>
<tr>
<td></td>
<td>• Heartbeat packets sent—Number of heartbeat messages sent on the control link.</td>
</tr>
<tr>
<td></td>
<td>• Heartbeat packets received—Number of heartbeat messages received on the control link.</td>
</tr>
<tr>
<td></td>
<td>• Heartbeat packet errors—Number of heartbeat packets received with errors on the control link.</td>
</tr>
<tr>
<td>Fabric link statistics</td>
<td>Statistics of the fabric link used by chassis cluster traffic. Statistics for Child Link 1 are displayed when you use dual fabric links.</td>
</tr>
<tr>
<td></td>
<td>• Probes sent—Number of probes sent on the fabric link.</td>
</tr>
<tr>
<td></td>
<td>• Probes received—Number of probes received on the fabric link.</td>
</tr>
</tbody>
</table>
Table 51: show chassis cluster statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services Synchronized</td>
<td>• Service name—Name of the service.</td>
</tr>
<tr>
<td></td>
<td>• Rtos sent—Number of runtime objects (RTOs) sent.</td>
</tr>
<tr>
<td></td>
<td>• Rtos received—Number of RTOs received.</td>
</tr>
<tr>
<td></td>
<td>• Translation context—Messages synchronizing Network Address Translation (NAT)</td>
</tr>
<tr>
<td></td>
<td>translation context.</td>
</tr>
<tr>
<td></td>
<td>• Incoming NAT—Messages synchronizing incoming Network Address Translation (NAT)</td>
</tr>
<tr>
<td></td>
<td>service.</td>
</tr>
<tr>
<td></td>
<td>• Resource manager—Messages synchronizing resource manager groups and resources.</td>
</tr>
<tr>
<td></td>
<td>• Session create—Messages synchronizing session creation.</td>
</tr>
<tr>
<td></td>
<td>• Session close—Messages synchronizing session close.</td>
</tr>
<tr>
<td></td>
<td>• Session change—Messages synchronizing session change.</td>
</tr>
<tr>
<td></td>
<td>• Gate create—Messages synchronizing creation of pinholes (temporary openings in the</td>
</tr>
<tr>
<td></td>
<td>firewall).</td>
</tr>
<tr>
<td></td>
<td>• Session ageout refresh request—Messages synchronizing request session after age-out.</td>
</tr>
<tr>
<td></td>
<td>• Session ageout refresh reply—Messages synchronizing reply session after age-out.</td>
</tr>
<tr>
<td></td>
<td>• IPSec VPN—Messages synchronizing VPN session.</td>
</tr>
<tr>
<td></td>
<td>• Firewall user authentication—Messages synchronizing firewall user authentication</td>
</tr>
<tr>
<td></td>
<td>session.</td>
</tr>
<tr>
<td></td>
<td>• MGCP ALG—Messages synchronizing MGCP ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• H323 ALG—Messages synchronizing H.323 ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• SIP ALG—Messages synchronizing SIP ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• SCCP ALG—Messages synchronizing SCCP ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• PPTP ALG—Messages synchronizing PPTP ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• RTSP ALG—Messages synchronizing RTSP ALG sessions.</td>
</tr>
<tr>
<td></td>
<td>• MAC address learning—Messages synchronizing MAC address learning.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster statistics

user@host>  show chassis cluster statistics
Control link statistics:
  Control link 0:
    Heartbeat packets sent: 798
    Heartbeat packets received: 784
    Heartbeat packets errors: 0
Fabric link statistics:
  Child link 0
    Probes sent: 793
    Probes received: 0
Services Synchronized:
Service name                | RTOs sent | RTOs received |
---                         |          |              |
  Translation context        | 0         | 0            |
  Incoming NAT               | 0         | 0            |
  Resource manager           | 0         | 0            |
  Session create             | 0         | 0            |
  Session close              | 0         | 0            |
  Session change             | 0         | 0            |
  Gate create                | 0         | 0            |
### Sample Output

**show chassis cluster statistics (SRX5000 Line Devices)**

```
user@host> show chassis cluster statistics
Control link statistics:
 Control link 0:
 Heartbeat packets sent: 258689
 Heartbeat packets received: 258684
 Heartbeat packets errors: 0
 Control link 1:
 Heartbeat packets sent: 258689
 Heartbeat packets received: 258684
 Heartbeat packets errors: 0

Fabric link statistics:
 Child link 0
 Probes sent: 258681
 Probes received: 258681
 Child link 1
 Probes sent: 258501
 Probes received: 258501

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS CTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Sample Output

show chassis cluster statistics (SRX5000 Line Devices)

user@host> show chassis cluster statistics

Control link statistics:
Control link 0:
  Heartbeat packets sent: 82371
  Heartbeat packets received: 82321
  Heartbeat packets errors: 0
Control link 1:
  Heartbeat packets sent: 0
  Heartbeat packets received: 0
  Heartbeat packets errors: 0

Fabric link statistics:
Child link 0
  Probes sent: 258681
  Probes received: 258681
Child link 1
  Probes sent: 258501
  Probes received: 258501

Services Synchronized:

<table>
<thead>
<tr>
<th>Service name</th>
<th>RTOs sent</th>
<th>RTOs received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation context</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Incoming NAT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource manager</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session create</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Session close</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Session change</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gate create</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh requests</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session ageout refresh replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPSec VPN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Firewall user authentication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MGCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H323 ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SIP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCCP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PPTP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPC ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RTSP ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RAS ALG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC address learning</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPRS GTP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
**show chassis cluster status**

**Supported Platforms**  
SRX Series, vSRX

**Syntax**  
```
show chassis cluster status
<redundancy-group group-number >
```

**Release Information**  
Support for monitoring failures added in Junos OS Release 12.1X47-D10.

**Description**  
Display the current status of the Chassis Cluster. You can use this command to check the status of chassis cluster nodes, redundancy groups, and failover status.

**Options**  
- none—Display the status of all redundancy groups in the chassis cluster.
- `redundancy-group group-number`—(Optional) Display the status of the specified redundancy group.

**Required Privilege Level**  
view

**Related Documentation**  
- redundancy-group (Chassis Cluster) on page 455
- clear chassis cluster failover-count on page 481
- request chassis cluster failover node on page 488
- request chassis cluster failover reset on page 491

**List of Sample Output**  
show chassis cluster status on page 536
show chassis cluster status redundancy-group 1 on page 537

**Output Fields**  
Table 52 on page 535 lists the output fields for the `show chassis cluster status` command. Output fields are listed in the approximate order in which they appear.

**Table 52: show chassis cluster status Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster ID</td>
<td>ID number (1-15) of a cluster is applicable for releases up to Junos OS Release 12.1X45-D10. ID number (1-255) is applicable for Releases 12.1X45-D10 and later. Setting a cluster ID to 0 is equivalent to disabling a cluster.</td>
</tr>
<tr>
<td>Redundancy-Group</td>
<td>You can create up to 128 redundancy groups in the chassis cluster.</td>
</tr>
<tr>
<td>Node name</td>
<td>Node (device) in the chassis cluster (<a href="#">node0</a> or <a href="#">node1</a>).</td>
</tr>
<tr>
<td>Priority</td>
<td>Assigned priority for the redundancy group on that node.</td>
</tr>
</tbody>
</table>
Table 52: show chassis cluster status Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>State of the redundancy group (Primary, Secondary, Lost, or Unavailable).</td>
</tr>
<tr>
<td></td>
<td>• Primary—Redundancy group is active and passing traffic.</td>
</tr>
<tr>
<td></td>
<td>• Secondary—Redundancy group is passive and not passing traffic.</td>
</tr>
<tr>
<td></td>
<td>• Lost—Node loses contact with the other node through the control link. Most likely to occur when both nodes are in a cluster and there is a control link failure, one node cannot exchange heartbeats, or when the other node is rebooted.</td>
</tr>
<tr>
<td></td>
<td>• Unavailable—Node has not received a single heartbeat over the control link from the other node since the other node booted up. Most likely to occur when one node boots up before the other node, or if only one node is present in the cluster.</td>
</tr>
<tr>
<td>Preempt</td>
<td>• Yes: Mastership can be preempted based on priority.</td>
</tr>
<tr>
<td></td>
<td>• No: Change in priority will not preempt the mastership.</td>
</tr>
<tr>
<td>Manual failover</td>
<td>• Yes: Mastership is set manually through the CLI with the request chassis cluster failover node or request chassis cluster failover redundancy-group command. This overrides Priority and Preempt.</td>
</tr>
<tr>
<td></td>
<td>• No: Mastership is not set manually through the CLI.</td>
</tr>
<tr>
<td>Monitor-failures</td>
<td>• None: Cluster working properly.</td>
</tr>
<tr>
<td></td>
<td>• Monitor Failure code: Cluster is not working properly and the respective failure code is displayed.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis cluster status

user@host> show chassis cluster status

Monitor Failure codes:

<table>
<thead>
<tr>
<th>Failure Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Cold Sync monitoring</td>
</tr>
<tr>
<td>GR</td>
<td>GRES monitoring</td>
</tr>
<tr>
<td>IF</td>
<td>Interface monitoring</td>
</tr>
<tr>
<td>LB</td>
<td>Loopback monitoring</td>
</tr>
<tr>
<td>NH</td>
<td>Nexthop monitoring</td>
</tr>
<tr>
<td>SP</td>
<td>SPU monitoring</td>
</tr>
<tr>
<td>CF</td>
<td>Config Sync monitoring</td>
</tr>
<tr>
<td>FL</td>
<td>Fabric Connection monitoring</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware monitoring</td>
</tr>
<tr>
<td>IP</td>
<td>IP monitoring</td>
</tr>
<tr>
<td>MB</td>
<td>Mbuf monitoring</td>
</tr>
<tr>
<td>NP</td>
<td>NPC monitoring</td>
</tr>
<tr>
<td>SM</td>
<td>Schedule monitoring</td>
</tr>
</tbody>
</table>

Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>200</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>

Redundancy group: 0, Failover count: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt</th>
<th>Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>101</td>
<td>primary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
<td>None</td>
</tr>
</tbody>
</table>
Sample Output

show chassis cluster status redundancy-group 1

user@host> show chassis cluster status redundancy-group 1

Monitor Failure codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Cold Sync monitoring</td>
</tr>
<tr>
<td>GR</td>
<td>GRES monitoring</td>
</tr>
<tr>
<td>IF</td>
<td>Interface monitoring</td>
</tr>
<tr>
<td>LB</td>
<td>Loopback monitoring</td>
</tr>
<tr>
<td>NH</td>
<td>Nexthop monitoring</td>
</tr>
<tr>
<td>SP</td>
<td>SPU monitoring</td>
</tr>
<tr>
<td>CF</td>
<td>Config Sync monitoring</td>
</tr>
<tr>
<td>FL</td>
<td>Fabric Connection monitoring</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware monitoring</td>
</tr>
<tr>
<td>IP</td>
<td>IP monitoring</td>
</tr>
<tr>
<td>MB</td>
<td>Mbuf monitoring</td>
</tr>
<tr>
<td>NP</td>
<td>NPC monitoring</td>
</tr>
<tr>
<td>SM</td>
<td>Schedule monitoring</td>
</tr>
</tbody>
</table>

Cluster ID: 1

<table>
<thead>
<tr>
<th>Node</th>
<th>Priority</th>
<th>Status</th>
<th>Preempt Manual</th>
<th>Monitor-failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>node0</td>
<td>101</td>
<td>primary</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>node1</td>
<td>1</td>
<td>secondary</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
show chassis environment (Security)

**Supported Platforms**  
SRX Series, vSRX

**Syntax**  
show chassis environment

**Release Information**  
Command introduced in Junos OS Release 9.2.

**Description**  
Display environmental information about the services gateway chassis, including the temperature and information about the fans, power supplies, and Routing Engine.

**Options**  
- **none**—Display environmental information about the device.
- **cb slot-number**—Display chassis environmental information for the Control Board.
- **fpc fpc-slot**—Display chassis environmental information for a specified Flexible PIC Concentrator.
- **fpm**—Display chassis environmental information for the craft interface (FPM).
- **pem slot-number**—Display chassis environmental information for the specified Power Entry Module.
- **routing-engine slot-number**—Display chassis environmental information for the specified Routing Engine.

**Required Privilege Level**  
view

**Related Documentation**  
- [show chassis hardware (View) on page 560](#)

**List of Sample Output**  
[show chassis environment on page 539](#)

**Output Fields**  
Table 53 on page 538 lists the output fields for the `show chassis environment` command. Output fields are listed in the approximate order in which they appear.

**Table 53: show chassis environment Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>Temperature of air flowing through the chassis in degrees Celsius (C) and Fahrenheit (F).</td>
</tr>
<tr>
<td>Fan</td>
<td>Fan status: OK, Testing (during initial power-on), Failed, or Absent.</td>
</tr>
</tbody>
</table>
Sample Output

```bash
show chassis environment

user@host> show chassis environment
user@host> show chassis environment

<table>
<thead>
<tr>
<th>Class</th>
<th>Item</th>
<th>Status</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>PEM 0</td>
<td>OK</td>
<td>40 degrees C / 104 degrees F</td>
</tr>
<tr>
<td></td>
<td>PEM 1</td>
<td>OK</td>
<td>40 degrees C / 104 degrees F</td>
</tr>
<tr>
<td></td>
<td>PEM 2</td>
<td>OK</td>
<td>40 degrees C / 104 degrees F</td>
</tr>
<tr>
<td></td>
<td>PEM 3</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
</tr>
<tr>
<td></td>
<td>Routing Engine 0</td>
<td>OK</td>
<td>31 degrees C / 87 degrees F</td>
</tr>
<tr>
<td></td>
<td>Routing Engine 0 CPU</td>
<td>OK</td>
<td>27 degrees C / 80 degrees F</td>
</tr>
<tr>
<td></td>
<td>Routing Engine 1</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Routing Engine 1 CPU</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 0 Intake</td>
<td>OK</td>
<td>28 degrees C / 82 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 0 Exhaust A</td>
<td>OK</td>
<td>27 degrees C / 80 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 0 Exhaust B</td>
<td>OK</td>
<td>29 degrees C / 84 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 0 ACBC</td>
<td>OK</td>
<td>29 degrees C / 84 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 0 SF A</td>
<td>OK</td>
<td>36 degrees C / 96 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 0 SF B</td>
<td>OK</td>
<td>31 degrees C / 87 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 Intake</td>
<td>OK</td>
<td>27 degrees C / 80 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 Exhaust A</td>
<td>OK</td>
<td>26 degrees C / 78 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 Exhaust B</td>
<td>OK</td>
<td>29 degrees C / 84 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 ACBC</td>
<td>OK</td>
<td>27 degrees C / 80 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 SF A</td>
<td>OK</td>
<td>36 degrees C / 96 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 1 SF B</td>
<td>OK</td>
<td>31 degrees C / 87 degrees F</td>
</tr>
<tr>
<td></td>
<td>CB 2 Intake</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 2 Exhaust A</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 2 Exhaust B</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 2 ACBC</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 2 XF A</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB 2 XF B</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPC 0 Intake</td>
<td>OK</td>
<td>47 degrees C / 116 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 0 Exhaust A</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 0 Exhaust B</td>
<td>OK</td>
<td>52 degrees C / 125 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 0 xlp0 Tsen</td>
<td>OK</td>
<td>51 degrees C / 123 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 0 xlp0 Chip</td>
<td>OK</td>
<td>46 degrees C / 114 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 0 xlp1 Tsen</td>
<td>OK</td>
<td>51 degrees C / 123 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 0 xlp1 Chip</td>
<td>OK</td>
<td>47 degrees C / 116 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 0 xlp2 Tsen</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 0 xlp2 Chip</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 0 xlp3 Tsen</td>
<td>OK</td>
<td>48 degrees C / 118 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 0 xlp3 Chip</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 Intake</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 Exhaust A</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 Exhaust B</td>
<td>OK</td>
<td>51 degrees C / 123 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 LU Tsen</td>
<td>OK</td>
<td>46 degrees C / 114 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 LU Chip</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 XM Tsen</td>
<td>OK</td>
<td>46 degrees C / 114 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 XM Chip</td>
<td>OK</td>
<td>52 degrees C / 125 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 xlp0 Tsen</td>
<td>OK</td>
<td>49 degrees C / 120 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 xlp0 Chip</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 xlp1 Tsen</td>
<td>OK</td>
<td>49 degrees C / 120 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 xlp1 Chip</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 xlp2 Tsen</td>
<td>OK</td>
<td>38 degrees C / 100 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 xlp2 Chip</td>
<td>OK</td>
<td>39 degrees C / 102 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 xlp3 Tsen</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 1 xlp3 Chip</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
</tr>
<tr>
<td></td>
<td>FPC 2 Intake</td>
<td>OK</td>
<td>29 degrees C / 84 degrees F</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Component</th>
<th>Status</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPC 2 Exhaust A</td>
<td>OK</td>
<td>34 degrees C / 93 degrees F</td>
</tr>
<tr>
<td>FPC 2 Exhaust B</td>
<td>OK</td>
<td>40 degrees C / 104 degrees F</td>
</tr>
<tr>
<td>FPC 2 I3 0 TSensor</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
</tr>
<tr>
<td>FPC 2 I3 0 Chip</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
</tr>
<tr>
<td>FPC 2 I3 1 TSensor</td>
<td>OK</td>
<td>40 degrees C / 104 degrees F</td>
</tr>
<tr>
<td>FPC 2 I3 1 Chip</td>
<td>OK</td>
<td>39 degrees C / 102 degrees F</td>
</tr>
<tr>
<td>FPC 2 I3 2 TSensor</td>
<td>OK</td>
<td>38 degrees C / 100 degrees F</td>
</tr>
<tr>
<td>FPC 2 I3 2 Chip</td>
<td>OK</td>
<td>37 degrees C / 98 degrees F</td>
</tr>
<tr>
<td>FPC 2 I3 3 TSensor</td>
<td>OK</td>
<td>35 degrees C / 95 degrees F</td>
</tr>
<tr>
<td>FPC 2 I3 3 Chip</td>
<td>OK</td>
<td>35 degrees C / 95 degrees F</td>
</tr>
<tr>
<td>FPC 2 IA 0 TSensor</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
</tr>
<tr>
<td>FPC 2 IA 0 Chip</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
</tr>
<tr>
<td>FPC 2 IA 1 TSensor</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
</tr>
<tr>
<td>FPC 2 IA 1 Chip</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
</tr>
<tr>
<td>FPC 9 Intake</td>
<td>OK</td>
<td>29 degrees C / 84 degrees F</td>
</tr>
<tr>
<td>FPC 9 Exhaust A</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
</tr>
<tr>
<td>FPC 9 Exhaust B</td>
<td>OK</td>
<td>48 degrees C / 118 degrees F</td>
</tr>
<tr>
<td>FPC 9 Lu TSen</td>
<td>OK</td>
<td>48 degrees C / 118 degrees F</td>
</tr>
<tr>
<td>FPC 9 Lu Chip</td>
<td>OK</td>
<td>47 degrees C / 116 degrees F</td>
</tr>
<tr>
<td>FPC 9 XM TSen</td>
<td>OK</td>
<td>48 degrees C / 118 degrees F</td>
</tr>
<tr>
<td>FPC 9 XM Chip</td>
<td>OK</td>
<td>54 degrees C / 129 degrees F</td>
</tr>
<tr>
<td>FPC 9 xlp0 TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
</tr>
<tr>
<td>FPC 9 xlp0 Chip</td>
<td>OK</td>
<td>42 degrees C / 107 degrees F</td>
</tr>
<tr>
<td>FPC 9 xlp1 TSen</td>
<td>OK</td>
<td>49 degrees C / 120 degrees F</td>
</tr>
<tr>
<td>FPC 9 xlp1 Chip</td>
<td>OK</td>
<td>46 degrees C / 114 degrees F</td>
</tr>
<tr>
<td>FPC 10 Exhaust A</td>
<td>OK</td>
<td>52 degrees C / 89 degrees F</td>
</tr>
<tr>
<td>FPC 10 Exhaust B</td>
<td>OK</td>
<td>53 degrees C / 127 degrees F</td>
</tr>
<tr>
<td>FPC 10 Lu TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
</tr>
<tr>
<td>FPC 10 Lu Chip</td>
<td>OK</td>
<td>52 degrees C / 125 degrees F</td>
</tr>
<tr>
<td>FPC 10 LU 0 TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
</tr>
<tr>
<td>FPC 10 LU 1 TSen</td>
<td>OK</td>
<td>44 degrees C / 111 degrees F</td>
</tr>
<tr>
<td>FPC 10 LU 2 TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
</tr>
<tr>
<td>FPC 10 LU 3 TSen</td>
<td>OK</td>
<td>50 degrees C / 122 degrees F</td>
</tr>
<tr>
<td>FPC 10 XM TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
</tr>
<tr>
<td>FPC 10 XM Chip</td>
<td>OK</td>
<td>58 degrees C / 136 degrees F</td>
</tr>
<tr>
<td>FPC 10 xlp0 TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
</tr>
<tr>
<td>FPC 10 xlp0 Chip</td>
<td>OK</td>
<td>53 degrees C / 127 degrees F</td>
</tr>
<tr>
<td>FPC 10 xlp1 TSen</td>
<td>OK</td>
<td>43 degrees C / 109 degrees F</td>
</tr>
<tr>
<td>FPC 10 xlp1 Chip</td>
<td>OK</td>
<td>64 degrees C / 147 degrees F</td>
</tr>
<tr>
<td>FPC 11 Intake</td>
<td>OK</td>
<td>32 degrees C / 89 degrees F</td>
</tr>
<tr>
<td>FPC 11 Exhaust A</td>
<td>OK</td>
<td>41 degrees C / 105 degrees F</td>
</tr>
<tr>
<td>FPC 11 Exhaust B</td>
<td>OK</td>
<td>56 degrees C / 132 degrees F</td>
</tr>
<tr>
<td>FPC 11 Lu TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
</tr>
<tr>
<td>FPC 11 Lu 0 Chip</td>
<td>OK</td>
<td>50 degrees C / 122 degrees F</td>
</tr>
<tr>
<td>FPC 11 Lu 1 TSen</td>
<td>OK</td>
<td>45 degrees C / 116 degrees F</td>
</tr>
<tr>
<td>FPC 11 Lu 2 TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
</tr>
<tr>
<td>FPC 11 Lu 3 TSen</td>
<td>OK</td>
<td>52 degrees C / 125 degrees F</td>
</tr>
<tr>
<td>FPC 11 XM TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
</tr>
<tr>
<td>FPC 11 XM Chip</td>
<td>OK</td>
<td>56 degrees C / 132 degrees F</td>
</tr>
<tr>
<td>FPC 11 xlp0 TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
</tr>
<tr>
<td>FPC 11 xlp0 Chip</td>
<td>OK</td>
<td>65 degrees C / 149 degrees F</td>
</tr>
<tr>
<td>Component</td>
<td>Status</td>
<td>Temperature</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>FPC 11 PLX Switch TSen</td>
<td>OK</td>
<td>45 degrees C / 113 degrees F</td>
</tr>
<tr>
<td>FPC 11 PLX Switch Chip</td>
<td>OK</td>
<td>46 degrees C / 114 degrees F</td>
</tr>
<tr>
<td>Fans</td>
<td>TOP</td>
<td>34 degrees C / 93 degrees F</td>
</tr>
<tr>
<td>Fans</td>
<td>BOTTOM</td>
<td>31 degrees C / 87 degrees F</td>
</tr>
<tr>
<td>Top Fan Tray Temp</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 1</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 2</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 3</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 4</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 5</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 6</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 7</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 8</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 9</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 10</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 11</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Top Tray Fan 12</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Fan Tray Temp</td>
<td>OK</td>
<td>31 degrees C / 87 degrees F</td>
</tr>
<tr>
<td>Bottom Tray Fan 1</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Tray Fan 2</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Tray Fan 3</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Tray Fan 4</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Tray Fan 5</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Tray Fan 6</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Tray Fan 7</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Tray Fan 8</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Tray Fan 9</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Tray Fan 10</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Tray Fan 11</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Bottom Tray Fan 12</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
</tbody>
</table>

OK
show chassis environment cb

Supported Platforms
SRX Series, vSRX

Syntax
show chassis environment cb
<slot>

Release Information
Command introduced in Junos OS Release 9.2.
Starting with Junos OS Release 12.1X47-D15, the SRX5K-SCBE (SCB2) is introduced and starting with Junos OS Release 15.1X49-D10, the SRX5K-SCB3 (SCB3) with enhanced midplane is introduced.

Description
Display environmental information about the Control Boards (CBs) installed on SRX Series devices.

Options
slot—(Optional) Display environmental information about the specified CB.

Required Privilege
view

Related Documentation
request chassis cb on page 486

List of Sample Output
show chassis environment cb (SRX5600 devices with SRX5K-SCB3 [SCB3] and Enhanced Midplanes) on page 543
show chassis environment cb node 1 (SRX5600 devices with SRX5K-SCB3 [SCB3] and Enhanced Midplanes) on page 543

Output Fields
Table 54 on page 542 lists the output fields for the show chassis environment cb command. Output fields are listed in the approximate order in which they appear.

Table 54: show chassis environment cb Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Status of the CB. If two CBs are installed and online, one is functioning as the master, and the other is the standby.</td>
</tr>
<tr>
<td></td>
<td>• Online—CB is online and running.</td>
</tr>
<tr>
<td></td>
<td>• Offline—CB is powered down.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Temperature in Celsius (C) and Fahrenheit (F) of the air flowing past the CB.</td>
</tr>
<tr>
<td></td>
<td>• Temperature Intake—Measures the temperature of the air intake to cool the power supplies.</td>
</tr>
<tr>
<td></td>
<td>• Temperature Exhaust—Measures the temperature of the hot air exhaust.</td>
</tr>
<tr>
<td>Power</td>
<td>Power required and measured on the CB. The left column displays the required power, in volts. The right column displays the measured power, in millivolts.</td>
</tr>
</tbody>
</table>
Table 54: show chassis environment cb Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS Revision</td>
<td>Revision level of the generic bus device.</td>
</tr>
<tr>
<td>FPGA Revision</td>
<td>Revision level of the field-programmable gate array (FPGA).</td>
</tr>
</tbody>
</table>

PMBus device

Enhanced SCB on SRX Series devices allows the system to save power by supplying only the amount of voltage that is required. Configurable PMBus devices are used to provide the voltage for each individual device. There is one PMBus device for each XF ASIC so that the output can be customized to each device. The following PMBus device information is displayed for devices with Enhanced MX SCB:

- Expected voltage
- Measured voltage
- Measured current
- Calculated power

Sample Output

show chassis environment cb (SRX5600 devices with SRX5K-SCB3 [SCB3] and Enhanced Midplanes)

```
user@host> show chassis environment cb node 0
node0:
CB 0 status:
State Online Master
Temperature 34 degrees C / 93 degrees F
Power 1
1.0 V 1002
1.2 V 1198
1.5 V 1501
1.8 V 1801
2.5 V 2507
3.3 V 3300
5.0 V 5014
5.0 V RE 4982
12.0 V 11988
12.0 V RE 11930
Power 2
4.6 V bias MidPlane 4801
11.3 V bias PEM 11292
11.3 V bias FPD 11272
11.3 V bias POE 0 11214
11.3 V bias POE 1 11253
Bus Revision 96
FPGA Revision 16
PMBus device Expected Measured Measured Calculated
 XF ASIC A 1033 mV 1033 mV 15500 mA 16011 mW
 XF ASIC B 1034 mV 1033 mV 15000 mA 15495 mW
```

show chassis environment cb node 1 (SRX5600 devices with SRX5K-SCB3 [SCB3] and Enhanced Midplanes)

```
user@host> show chassis environment cb node 1
```
CB 0 status:

<table>
<thead>
<tr>
<th>State</th>
<th>Online Master</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>35 degrees C / 95 degrees F</td>
</tr>
</tbody>
</table>

Power 1

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 V</td>
<td>1002</td>
</tr>
<tr>
<td>1.2 V</td>
<td>1198</td>
</tr>
<tr>
<td>1.5 V</td>
<td>1504</td>
</tr>
<tr>
<td>1.8 V</td>
<td>1801</td>
</tr>
<tr>
<td>2.5 V</td>
<td>2507</td>
</tr>
<tr>
<td>3.3 V</td>
<td>3325</td>
</tr>
<tr>
<td>5.0 V</td>
<td>5014</td>
</tr>
<tr>
<td>5.0 V RE</td>
<td>4943</td>
</tr>
<tr>
<td>12.0 V</td>
<td>12007</td>
</tr>
<tr>
<td>12.0 V RE</td>
<td>12007</td>
</tr>
</tbody>
</table>

Power 2

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 V bias MidPlane</td>
<td>4814</td>
</tr>
<tr>
<td>11.3 V bias PEM</td>
<td>11272</td>
</tr>
<tr>
<td>11.3 V bias FPD</td>
<td>11330</td>
</tr>
<tr>
<td>11.3 V bias POE 0</td>
<td>11176</td>
</tr>
<tr>
<td>11.3 V bias POE 1</td>
<td>11292</td>
</tr>
</tbody>
</table>

Bus Revision: 96

FPGA Revision: 16

<table>
<thead>
<tr>
<th>PMBus device</th>
<th>Expected voltage</th>
<th>Measured voltage</th>
<th>Measured current</th>
<th>Calculated power</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF ASIC A</td>
<td>958 mV</td>
<td>959 mV</td>
<td>13500 mA</td>
<td>12946 mW</td>
</tr>
<tr>
<td>XF ASIC B</td>
<td>1033 mV</td>
<td>1031 mV</td>
<td>16500 mA</td>
<td>17011 mW</td>
</tr>
</tbody>
</table>
show chassis ethernet-switch

Supported Platforms  SRX Series, vSRX

Syntax  show chassis ethernet-switch


Description  Display information about the ports on the Control Board (CB) Ethernet switch on an SRX Series device.

Required Privilege  Level  view

Related Documentation  •  cluster (Chassis) on page 411

List of Sample Output  show chassis ethernet-switch on page 545

Output Fields  Table 55 on page 545 lists the output fields for the show chassis ethernet-switch command. Output fields are listed in the approximate order in which they appear.

Table 55: show chassis ethernet-switch Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link is good on port n connected to device</td>
<td>Information about the link between each port on the CB's Ethernet switch and one of the following devices:</td>
</tr>
<tr>
<td>or Link is good on Fast Ethernet port n</td>
<td>•  FPC0 (Flexible PIC Concentrator 0) through FPC7</td>
</tr>
<tr>
<td>connected to device</td>
<td>•  Local controller</td>
</tr>
<tr>
<td></td>
<td>•  Routing Engine</td>
</tr>
<tr>
<td></td>
<td>•  Other Routing Engine (on a system with two Routing Engines)</td>
</tr>
<tr>
<td></td>
<td>•  SPMB (Switch Processor Mezzanine Board)</td>
</tr>
<tr>
<td>Speed is</td>
<td>Speed at which the Ethernet link is running.</td>
</tr>
<tr>
<td>Duplex is</td>
<td>Duplex type of the Ethernet link: full or half.</td>
</tr>
<tr>
<td>Autonegotiate is Enabled (or Disabled)</td>
<td>By default, built-in Fast Ethernet ports on a PIC autonegotiate whether to operate at 10 Mbps or 100 Mbps. All other interfaces automatically choose the correct speed based on the PIC type and whether the PIC is configured to operate in multiplexed mode.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis ethernet-switch

user@host> show chassis ethernet-switch
node0: ct:show chassis ethernet-switch
--------------------------------------------------------------------------
Displaying summary for switch 0
Link is good on GE port 0 connected to device: FPC0
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 1 connected to device: FPC1
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 2 connected to device: FPC2
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 3 connected to device: FPC3
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 4 connected to device: FPC4
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is down on GE port 5 connected to device: FPC5

Link is down on GE port 6 connected to device: FPC6

Link is good on GE port 7 connected to device: FPC7
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 8 connected to device: FPC8
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 9 connected to device: FPC9
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled
Link is down on GE port 10 connected to device: FPC10

Link is down on GE port 11 connected to device: FPC11

Link is good on GE port 12 connected to device: Other RE
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 13 connected to device: RE-GigE
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is down on GE port 14 connected to device: Debug-GigE

node1:

Displaying summary for switch 0
Link is good on GE port 0 connected to device: FPC0
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 1 connected to device: FPC1
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 2 connected to device: FPC2
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 3 connected to device: FPC3
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 4 connected to device: FPC4
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is down on GE port 5 connected to device: FPC5

Link is down on GE port 6 connected to device: FPC6
Link is good on GE port 7 connected to device: FPC7
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 8 connected to device: FPC8
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 9 connected to device: FPC9
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is down on GE port 10 connected to device: FPC10

Link is down on GE port 11 connected to device: FPC11

Link is good on GE port 12 connected to device: Other RE
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is good on GE port 13 connected to device: RE-GigE
  Speed is 1000Mb
  Duplex is full
  Autonegotiate is Enabled
  Flow Control TX is Disabled
  Flow Control RX is Disabled

Link is down on GE port 14 connected to device: Debug-GigE
**show chassis fabric plane**

**Supported Platforms**  
SRX Series, vSRX

**Syntax**  
show chassis fabric plane

**Release Information**  
Command introduced in Junos OS Release 9.2.

**Description**  
Show state of fabric management plane.

**Required Privilege Level**  
view

**Related Documentation**  
- show chassis fabric plane-location on page 555

**List of Sample Output**  
show chassis fabric plane(SRX5600 and SRX5800 Devices with SRX5000 Line SCB II [SRX5K-SCBE] and SRX5K-RE-1800X4) on page 550

**Output Fields**  
Table 56 on page 549 lists the output fields for the **show chassis fabric plane** command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>Number of the plane.</td>
<td>none</td>
</tr>
<tr>
<td>Plane state</td>
<td>State of each plane:</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>• ACTIVE—SIB is operational and running.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FAULTY—SIB is in alarmed state where the SIB's plane is not operational for the following reasons:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• On-board fabric ASIC is not operational.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fiber-optic connector faults.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FPC connector faults.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SIB midplane connector faults.</td>
<td></td>
</tr>
<tr>
<td>FPC</td>
<td>Slot number of each Flexible PIC Concentrator (FPC).</td>
<td>none</td>
</tr>
<tr>
<td>PFE</td>
<td>Slot number of each Packet Forwarding Engine and the state of the links to the FPC:</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>• Links ok: Link between SiB and FPC is active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Link error: Link between SiB and FPC is not operational.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unused: No FPC is present.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 56: show chassis fabric plane Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of output</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>State of the fabric plane:</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>• <strong>Online</strong>: Fabric plane is operational and running and links on the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIB are operational.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Offline</strong>: Fabric plane state is <strong>Offline</strong> because the plane does</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not have four or more F2S and one F13 online.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Empty</strong>: Fabric plane state is <strong>Empty</strong> if all SIBs in the plane are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>absent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Spare</strong>: Fabric plane is redundant and can be operational if the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>operational fabric plane encounters an error.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Check</strong>: Fabric plane is in alarmed state due to the following</td>
<td></td>
</tr>
<tr>
<td></td>
<td>reason and the cause of the error must be resolved:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• One or more SIBs (belonging to the fabric plane) in the <strong>Online</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or <strong>Spare</strong> states has transitioned to the <strong>Check</strong> state.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Check</strong> state of the SIB can be caused by link errors or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>destination errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Fault</strong>: Fabric plane is in alarmed state if one or more SIBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>belonging to the plane are in the <strong>Fault</strong> state. A SIB can be in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the <strong>Fault</strong> state because of the following reasons:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• On-board fabric ASIC is not operational.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fiber-optic connector faults.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FPC connector faults.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SIB midplane connector faults.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Link errors have exceeded the threshold.</td>
<td></td>
</tr>
</tbody>
</table>

### Sample Output

**show chassis fabric plane**

*(SRX5600 and SRX5800 Devices with SRX5000 Line SCB II [SRX5K-SCBE] and SRX5K-RE-1800X4)*

```
user@host> show chassis fabric plane
node0:

Fabric management PLANE state
Plane 0
 Plane state: ACTIVE
 FPC 0
 PFE 0 :Links ok
 FPC 2
 PFE 0 :Links ok
 FPC 3
 PFE 0 :Links ok
 FPC 4
 PFE 0 :Links ok
 FPC 7
 PFE 0 :Links ok
 FPC 8
 PFE 0 :Links ok
 FPC 9
 PFE 0 :Links ok
 FPC 10
```
Plane 1
Plane state: ACTIVE
  FPC 0
    PFE 0 : Links ok
  FPC 2
    PFE 0 : Links ok
  FPC 3
    PFE 0 : Links ok
  FPC 4
    PFE 0 : Links ok
  FPC 7
    PFE 0 : Links ok
  FPC 8
    PFE 0 : Links ok
  FPC 9
    PFE 0 : Links ok
  FPC 10
    PFE 0 : Links ok

Plane 2
Plane state: ACTIVE
  FPC 0
    PFE 0 : Links ok
  FPC 2
    PFE 0 : Links ok
  FPC 3
    PFE 0 : Links ok
  FPC 4
    PFE 0 : Links ok
  FPC 7
    PFE 0 : Links ok
  FPC 8
    PFE 0 : Links ok
  FPC 9
    PFE 0 : Links ok
  FPC 10
    PFE 0 : Links ok

Plane 3
Plane state: ACTIVE
  FPC 0
    PFE 0 : Links ok
  FPC 2
    PFE 0 : Links ok
  FPC 3
    PFE 0 : Links ok
  FPC 4
    PFE 0 : Links ok
  FPC 7
    PFE 0 : Links ok
  FPC 8
    PFE 0 : Links ok
  FPC 9
    PFE 0 : Links ok
  FPC 10
    PFE 0 : Links ok

Plane 4
Plane state: SPARE
  FPC 0
    PFE 0 : Links ok
  FPC 2
    PFE 0 : Links ok
FPC 3
PFE 0: Links ok
FPC 4
PFE 0: Links ok
FPC 7
PFE 0: Links ok
FPC 8
PFE 0: Links ok
FPC 9
PFE 0: Links ok
FPC 10
PFE 0: Links ok

Plane 5
Plane state: SPARE
FPC 0
PFE 0: Links ok
FPC 2
PFE 0: Links ok
FPC 3
PFE 0: Links ok
FPC 4
PFE 0: Links ok
FPC 7
PFE 0: Links ok
FPC 8
PFE 0: Links ok
FPC 9
PFE 0: Links ok
FPC 10
PFE 0: Links ok

node1:
------------------------------------------------------------------------------------------------------------------
Fabric management PLANE state
Plane 0
Plane state: ACTIVE
FPC 0
PFE 0: Links ok
FPC 1
PFE 0: Links ok
FPC 2
PFE 0: Links ok
FPC 3
PFE 0: Links ok
FPC 4
PFE 0: Links ok
FPC 7
PFE 0: Links ok
FPC 8
PFE 0: Links ok
FPC 9
PFE 0: Links ok
FPC 10
PFE 0: Links ok

Plane 1
Plane state: ACTIVE
FPC 0
PFE 0: Links ok
FPC 1
PFE 0: Links ok
FPC 2
PFE 0: Links ok
FPC 3
Plane 2
Plane state: ACTIVE
FPC 0
PFE 0 : Links ok
FPC 1
PFE 0 : Links ok
FPC 2
PFE 0 : Links ok
FPC 3
PFE 0 : Links ok
FPC 4
PFE 0 : Links ok
FPC 7
PFE 0 : Links ok
FPC 8
PFE 0 : Links ok
FPC 10
PFE 0 : Links ok

Plane 3
Plane state: ACTIVE
FPC 0
PFE 0 : Links ok
FPC 1
PFE 0 : Links ok
FPC 2
PFE 0 : Links ok
FPC 3
PFE 0 : Links ok
FPC 4
PFE 0 : Links ok
FPC 7
PFE 0 : Links ok
FPC 8
PFE 0 : Links ok
FPC 10
PFE 0 : Links ok

Plane 4
Plane state: SPARE
FPC 0
PFE 0 : Links ok
FPC 1
PFE 0 : Links ok
FPC 2
PFE 0 : Links ok
FPC 3
PFE 0 : Links ok
FPC 4
PFE 0 : Links ok
FPC 7
PFE 0 : Links ok
FPC 8
PFE 0 : Links ok
FPC 10
PFE 0 : Links ok
Plane 5
  Plane state: SPARE
  FPC 0
    PFE 0 : Links ok
  FPC 1
    PFE 0 : Links ok
  FPC 2
    PFE 0 : Links ok
  FPC 3
    PFE 0 : Links ok
  FPC 4
    PFE 0 : Links ok
  FPC 7
    PFE 0 : Links ok
  FPC 8
    PFE 0 : Links ok
  FPC 10
    PFE 0 : Links ok
show chassis fabric plane-location

Supported Platforms  
SRX Series, vSRX

Syntax  
show chassis fabric plane-location

Release Information  
Command introduced in Junos OS Release 9.2.

Description  
Show fabric plane location.

Required Privilege  
view

Related Documentation  
- show chassis fabric plane on page 549

List of Sample Output  
show chassis fabric plane-location(SRX5600 and SRX5800 Devices with SRX5000 Line SCB II [SRX5K-SCBE] and SRX5K-RE-1800X4) on page 555

Output Fields  
Table 57 on page 555 lists the output fields for the `show chassis fabric plane-location` command. Output fields are listed in the approximate order in which they appear.

Table 57: show chassis fabric plane-location Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane n</td>
<td>Plane number.</td>
</tr>
<tr>
<td>Control Board n</td>
<td>Control Board number.</td>
</tr>
</tbody>
</table>

Sample Output

show chassis fabric plane-location  
(SRX5600 and SRX5800 Devices with SRX5000 Line SCB II [SRX5K-SCBE] and SRX5K-RE-1800X4)

user@host> show chassis fabric plane-location
node0:
--------------------------------------------------------------------------
------------Fabric Plane Locations-------------
Plane 0  Control Board 0
Plane 1  Control Board 0
Plane 2  Control Board 1
Plane 3  Control Board 1
Plane 4  Control Board 2
Plane 5  Control Board 2
node1:
--------------------------------------------------------------------------
------------Fabric Plane Locations-------------
Plane 0  Control Board 0
Plane 1  Control Board 0
<table>
<thead>
<tr>
<th>Plane 2</th>
<th>Control Board 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane 3</td>
<td>Control Board 1</td>
</tr>
<tr>
<td>Plane 4</td>
<td>Control Board 2</td>
</tr>
<tr>
<td>Plane 5</td>
<td>Control Board 2</td>
</tr>
</tbody>
</table>
show chassis fabric summary

Supported Platforms  SRX Series, vSRX

Syntax  show chassis fabric summary


Description  Show summary fabric management state.

Options  This command has no options.

Required Privilege  view

Related Documentation  •  show chassis fabric plane on page 549
                       •  show chassis fabric plane-location on page 555

List of Sample Output  show chassis fabric summary(SRX5600 and SRX5800 devices with SRX5000 line SCB II (SRX5K-SCBE) and SRX5K-RE-1800X4) on page 558

Output Fields  Table 58 on page 557 lists the output fields for the show chassis fabric summary command. Output fields are listed in the approximate order in which they appear.

Table 58: show chassis fabric summary Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>Plane number.</td>
</tr>
</tbody>
</table>
### Table 58: show chassis fabric summary Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>State</strong></td>
<td>State of the SIB or FPC:</td>
</tr>
<tr>
<td></td>
<td>• <strong>Online</strong>—Switch Interface Board (SIB) is operational and running.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Empty</strong>—SIB is powered down.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Check</strong>—SIB is in the <strong>Check</strong> state because of the following reasons:</td>
</tr>
<tr>
<td></td>
<td>• SIB is not inserted properly.</td>
</tr>
<tr>
<td></td>
<td>• Some destination errors are detected on the SIB. In this case, the Packet Forwarding Engine stops using the SIB to send traffic to the affected destination Packet Forwarding Engine.</td>
</tr>
<tr>
<td></td>
<td>• Some link errors are detected on the channel between the SIB and a Packet Forwarding Engine. Link errors can be detected at initialization time or runtime:</td>
</tr>
<tr>
<td></td>
<td>• Link errors caused by a link training failure at initialization time—The Packet Forwarding Engine does not use the SIB to send traffic. The <code>show chassis fabric fpcs</code> command shows <strong>Plane disabled</strong> as status for this link.</td>
</tr>
<tr>
<td></td>
<td>• Link errors caused by CRC errors detected at runtime—The Packet Forwarding Engine continues to use the SIB to send traffic. The <code>show chassis fabric fpcs</code> command shows <strong>Link error</strong> as the status for this link.</td>
</tr>
<tr>
<td></td>
<td>For information about link and destination errors, issue the <code>show chassis fabric fpc</code> commands.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Spare</strong>—SIB is redundant and will move to active state if one of the working SIBs fails.</td>
</tr>
<tr>
<td><strong>Errors</strong></td>
<td>Indicates whether there is any error on the SIB.</td>
</tr>
<tr>
<td></td>
<td>• <strong>None</strong>—No errors</td>
</tr>
<tr>
<td></td>
<td>• <strong>Link Errors</strong>—Fabric link errors were found on the SIB RX link.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Cell drops</strong>—Fabric cell drops were found on the SIB ASIC.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Link, Cell drops</strong>—Both link errors and cell drops were detected on at least one of the FPC's fabric links.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE:</strong> The <strong>Errors</strong> column is empty only when the FPC or SIB is offline.</td>
</tr>
<tr>
<td><strong>Uptime</strong></td>
<td>Elapsed time the plane has been online.</td>
</tr>
</tbody>
</table>

### Sample Output

```
show chassis fabric summary
(SRX5600 and SRX5800 devices with SRX5000 line SCB II (SRX5K-SCBE) and SRX5K-RE-1800X4)

user@host> show chassis fabric summary
node0:
+----------+-------+-----------------+
<table>
<thead>
<tr>
<th>Plane</th>
<th>State</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Online</td>
<td>14 minutes, 10 seconds</td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>14 minutes, 5 seconds</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>14 minutes</td>
</tr>
<tr>
<td>3</td>
<td>Online</td>
<td>13 minutes, 55 seconds</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Plane</th>
<th>State</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Online</td>
<td>14 minutes, 7 seconds</td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>14 minutes, 2 seconds</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>13 minutes, 57 seconds</td>
</tr>
<tr>
<td>3</td>
<td>Online</td>
<td>13 minutes, 51 seconds</td>
</tr>
<tr>
<td>4</td>
<td>Spare</td>
<td>13 minutes, 46 seconds</td>
</tr>
<tr>
<td>5</td>
<td>Spare</td>
<td>13 minutes, 41 seconds</td>
</tr>
</tbody>
</table>

---

4      Spare    13 minutes, 50 seconds  
5      Spare    13 minutes, 44 seconds

node1:

---
show chassis hardware (View)

Supported Platforms  SRX Series

Syntax  
show chassis hardware
<clei-models | detail | extensive | models | node (node-id | all | local | primary)>

Release Information  Command introduced in Junos OS Release 9.2. Command modified in Junos OS Release 9.2 to include node option.

Description  Display chassis hardware information.

Options  
- clei-models—(Optional) Display Common Language Equipment Identifier Code (CLEI) barcode and model number for orderable field-replaceable units (FRUs).
- detail | extensive—(Optional) Display the specified level of output.
- models—(Optional) Display model numbers and part numbers for orderable FRUs.
- node—(Optional) For chassis cluster configurations, display chassis hardware information on a specific node (device) in the cluster.
  - node-id—Identification number of the node. It can be 0 or 1.
  - local—Display information about the local node.
  - primary—Display information about the primary node.

Required Privilege Level  view

Related Documentation  
- Juniper Networks Devices Processing Overview
- Interface Naming Conventions

Output Fields  Table 59 on page 560 lists the output fields for the show chassis hardware command. Output fields are listed in the approximate order in which they appear.

Table 59: show chassis hardware Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Chassis component—Information about the backplane; power supplies; fan trays; Routing Engine; each Physical Interface Module (PIM)—reported as FPC and PIC—and each fan, blower, and impeller.</td>
</tr>
<tr>
<td>Version</td>
<td>Revision level of the chassis component.</td>
</tr>
<tr>
<td>Part Number</td>
<td>Part number for the chassis component.</td>
</tr>
</tbody>
</table>
### Table 59: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Number</td>
<td>Serial number of the chassis component. The serial number of the backplane is also the serial number of the device chassis. Use this serial number when you need to contact Juniper Networks Customer Support about the device chassis.</td>
</tr>
<tr>
<td>Assb ID or Assembly ID</td>
<td>Identification number that describes the FRU hardware.</td>
</tr>
<tr>
<td>FRU model number</td>
<td>Model number of FRU hardware component.</td>
</tr>
<tr>
<td>CLEI code</td>
<td>Common Language Equipment Identifier code. This value is displayed only for hardware components that use ID EEPROM format v2. This value is not displayed for components that use ID EEPROM format v1.</td>
</tr>
<tr>
<td>EEPROM Version</td>
<td>ID EEPROM version used by hardware component: 0x01 (version 1) or 0x02 (version 2).</td>
</tr>
</tbody>
</table>
Table 59: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Brief description of the hardware item:</td>
</tr>
<tr>
<td>• Type of power supply.</td>
<td></td>
</tr>
<tr>
<td>• Switch Control Board (SCB)</td>
<td></td>
</tr>
<tr>
<td>Starting with Junos OS Release 12.1X47-D15 and Junos OS Release 17.3R1, the SRX5K-SCBE (SCB2) is introduced.</td>
<td></td>
</tr>
<tr>
<td>• There are three SCB slots in SRX5800 devices. The third slot can be used for an SCB or an FPC. When an SRX5K-SCB was used, the third SCB slot was used as an FPC. SCB redundancy is provided in chassis cluster mode.</td>
<td></td>
</tr>
<tr>
<td>• With an SCB2, a third SCB is supported. If a third SCB is plugged in, it provides intra-chassis fabric redundancy.</td>
<td></td>
</tr>
<tr>
<td>• The Ethernet switch in the SCB2 provides the Ethernet connectivity among all the FPCs and the Routing Engine. The Routing Engine uses this connectivity to distribute forwarding and routing tables to the FPCs. The FPCs use this connectivity to send exception packets to the Routing Engine.</td>
<td></td>
</tr>
<tr>
<td>• Fabric connects all FPCs in the data plane. The Fabric Manager executes on the Routing Engine and controls the fabric system in the chassis. Packet Forwarding Engines on the FPC and fabric planes on the SCB are connected through HSL2 channels.</td>
<td></td>
</tr>
<tr>
<td>• SCB2 supports HSL2 with both 3.11 Gbps and 6.22 Gbps (SerDes) link speed and various HSL2 modes. When an FPC is brought online, the link speed and HSL2 mode are determined by the type of FPC.</td>
<td></td>
</tr>
<tr>
<td>Starting with Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1, the SRX5K-SCB3 (SCB3) with enhanced midplane is introduced.</td>
<td></td>
</tr>
<tr>
<td>• All existing SCB software that is supported by SCB2 is supported on SCB3.</td>
<td></td>
</tr>
<tr>
<td>• SRX5K-RE-1800X4 (RE2). Mixed Routing Engine use is not supported.</td>
<td></td>
</tr>
<tr>
<td>• SCB3 works with the SRX5K-MPC (IOC2), SRX5K-MPC3-100G10G (IOC3), SRX5K-MPC3-40G10G (IOC3), and SRX5K-SPC-4-15-320 (SPC2) with current midplanes and the new enhanced midplanes.</td>
<td></td>
</tr>
<tr>
<td>• Mixed SCB use is not supported. If an SCB2 and an SCB3 are used, the system will only power on the master Routing Engine's SCB and will power off the other SCBs. Only the SCB in slot 0 is powered on and a system log is generated.</td>
<td></td>
</tr>
<tr>
<td>• SCB3 supports up to 400 Gbps per slot with old midplanes and up to 500 Gbps per slot with new midplanes.</td>
<td></td>
</tr>
<tr>
<td>• SCB3 supports fabric intra-chassis redundancy.</td>
<td></td>
</tr>
<tr>
<td>• SCB3 supports the same chassis cluster function as the SRX5K-SCB (SCB1) and the SRX5K-SCBE (SCB2), except for in-service software upgrade (ISSU) and in-service hardware upgrade (ISHU).</td>
<td></td>
</tr>
<tr>
<td>• SCB3 has a second external Ethernet port.</td>
<td></td>
</tr>
<tr>
<td>• Fabric bandwidth increasing mode is not supported.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 59: show chassis hardware Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Type of Flexible PIC Concentrator (FPC), Physical Interface Card (PIC), Modular Interface Cards (MICs), and PIMs.</td>
<td></td>
</tr>
<tr>
<td>• IOCs</td>
<td>Starting with Junos OS Release 15.1X49-D10 and Junos OS Release 17.3R1, the SRX5K-MPC3-100G10G (IOC3) and the SRX5K-MPC3-40G10G (IOC3) are introduced.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>IOC3 has two types of IOC3 MPCs, which have different built-in MICs: the 24x10GE + 6x40GE MPC and the 2x100GE + 4x10GE MPC.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>IOC3 supports SCB3 and SRX5000 line backplane and enhanced backplane.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>IOC3 can only work with SRX5000 line SCB2 and SCB3. If an SRX5000 line SCB is detected, IOC3 is offline, an FPC misconfiguration alarm is raised, and a system log message is generated.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>IOC3 interoperates with SCB2 and SCB3.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>IOC3 interoperates with the SRX5K-SPC-4-15-320 (SPC2) and the SRX5K-MPC (IOC2).</td>
</tr>
<tr>
<td>• IOC3</td>
<td>The maximum power consumption for one IOC3 is 645W. An enhanced power module must be used.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>The IOC3 does not support the following command to set a PIC to go offline or online: request chassis pic fpc-slot &lt;fpc-slot&gt; pic-slot &lt;pic-slot&gt; &lt;offline</td>
</tr>
<tr>
<td>• IOC3</td>
<td>IOC3 supports 240 Gbps of throughput with the enhanced SRX5000 line backplane.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>Chassis cluster functions the same as for the SRX5000 line IOC2.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>IOC3 supports intra-chassis and inter-chassis fabric redundancy mode.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>IOC3 supports ISSU and ISHU in chassis cluster mode.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>IOC3 supports intra-FPC and and Inter-FPC Express Path (previously known as services offloading) with IPv4.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>NAT of IPv4 and IPv6 in normal mode and IPv4 for Express Path mode.</td>
</tr>
<tr>
<td>• IOC3</td>
<td>All four PICs on the 24x10GE + 6x40GE cannot be powered on. A maximum of two PICs can be powered on at the same time. Use the set chassis fpc &lt;slot&gt; pic &lt;pic&gt; power off command to choose the PICs you want to power on.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>Fabric bandwidth increasing mode is not supported on IOC3.</td>
</tr>
<tr>
<td>• SRX Clustering Module (SCM)</td>
<td></td>
</tr>
<tr>
<td>• Fan tray</td>
<td>For hosts, the Routing Engine type.</td>
</tr>
<tr>
<td>• RE2</td>
<td>Starting with Junos OS Release 12.1X47-D15 and Junos OS Release 17.3R1, the SRX5K-RE-1800X4 (RE2) Routing Engine is introduced.</td>
</tr>
<tr>
<td>• RE2</td>
<td>The RE2 has an Intel Quad core Xeon processor, 16 GB of DRAM, and a 128-GB solid-state drive (SSD). The number 1800 refers to the speed of the processor (1.8 GHz). The maximum required power for this Routing Engine is 90W.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The RE2 provides significantly better performance than the previously used Routing Engine, even with a single core.</td>
</tr>
</tbody>
</table>
show chassis hardware

show chassis hardware

user@host> show chassis hardware
Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 08</td>
<td>750-058562</td>
<td>ACMA4255</td>
<td>SRX1500</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 08</td>
<td>711-053838</td>
<td>ACMA7529</td>
<td>CPU Board SRX700E</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 07</td>
<td>711-053832</td>
<td>ACMA3311</td>
<td></td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xcvr 12</td>
<td>REV 01</td>
<td>740-014132</td>
<td>61521013</td>
<td></td>
</tr>
<tr>
<td>Xcvr 13</td>
<td>REV 02</td>
<td>740-013111</td>
<td>A281604</td>
<td></td>
</tr>
<tr>
<td>Xcvr 14</td>
<td>REV 02</td>
<td>740-011613</td>
<td>NRN30NV</td>
<td></td>
</tr>
<tr>
<td>Xcvr 15</td>
<td>REV 02</td>
<td>740-011613</td>
<td>NRN2PWV</td>
<td></td>
</tr>
<tr>
<td>Xcvr 16</td>
<td>REV 01</td>
<td>740-021308</td>
<td>A3A17B5</td>
<td></td>
</tr>
<tr>
<td>Xcvr 17</td>
<td>REV 01</td>
<td>740-021308</td>
<td>MSP056B</td>
<td></td>
</tr>
<tr>
<td>Xcvr 18</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AS920WJ</td>
<td></td>
</tr>
<tr>
<td>Xcvr 19</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AS92W5N</td>
<td></td>
</tr>
<tr>
<td>Power Supply 0</td>
<td>REV 01</td>
<td>740-055217</td>
<td>1EDP4250000Z</td>
<td></td>
</tr>
<tr>
<td>Fan Tray 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan Tray 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan Tray 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan Tray 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show chassis hardware (SRX5600 and SRX5800 devices for SRX5K-MPC)

user@host> show chassis hardware
Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>710-041799</td>
<td>ACAX3849</td>
<td>SRX 5800 Backplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024632</td>
<td>CAAX7297</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>REV 03</td>
<td>740-013110</td>
<td>QCS170250DU</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17020203F</td>
<td>PS 4.1kW; 200–240V AC in</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17020203C</td>
<td>PS 4.1kW; 200–240V AC in</td>
</tr>
<tr>
<td>PEM 2</td>
<td>Rev 04</td>
<td>740-034724</td>
<td>QCS17100200A</td>
<td>PS 4.1kW; 200–240V AC in</td>
</tr>
<tr>
<td>PEM 3</td>
<td>Rev 03</td>
<td>740-034724</td>
<td>QCS17080200M</td>
<td>PS 4.1kW; 200–240V AC in</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 11</td>
<td>740-023530</td>
<td>9012047437</td>
<td>SRX5k RE-13-20</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 09</td>
<td>710-024802</td>
<td>CAAX7202</td>
<td>SRX5k SCB</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 09</td>
<td>710-024802</td>
<td>CAAX7157</td>
<td>SRX5k SCB</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 07</td>
<td>750-044175</td>
<td>CAAD0791</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td>SPU Cp</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 07</td>
<td>750-044175</td>
<td>CAAD0751</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td>BUILTIN</td>
<td>SRX5k DPC PPC</td>
</tr>
</tbody>
</table>
show chassis hardware (with 20-Gigabit Ethernet MIC with SFP)

user@host> show chassis hardware

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>JN108DASAAGA</td>
<td>SRX 5800</td>
<td></td>
<td>SRX 5800</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 02</td>
<td>710-013698</td>
<td>TR0037</td>
<td>SRX 5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 02</td>
<td>710-014974</td>
<td>JY4635</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PDM</td>
<td>REV 02</td>
<td>740-013110</td>
<td>QCS10465005</td>
<td>Power Distribution Module</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-023514</td>
<td>QCS11154040</td>
<td>PS 1.7kW; 200-240VAC in</td>
</tr>
<tr>
<td>PEM 2</td>
<td>Rev 02</td>
<td>740-023514</td>
<td>QCS10504014</td>
<td>PS 1.7kW; 200-240VAC in</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>Rev 05</td>
<td>740-015113</td>
<td>1000681023</td>
<td>RE-S-1300</td>
</tr>
<tr>
<td>CB 0</td>
<td>Rev 05</td>
<td>710-013385</td>
<td>JY4775</td>
<td>SRX5k SCB</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 17</td>
<td>750-020751</td>
<td>WZ6349</td>
<td>SRX5k DPC 4X 10GE</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>710-024633</td>
<td>WZ0718</td>
<td>SRX5k DPC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td>REV 02</td>
<td>710-011571</td>
<td>C831XJ08S</td>
<td>1x10GE(LAN/WAN) RichQ</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 02</td>
<td>740-014289</td>
<td>T10A00404</td>
<td>XFP-10G-SR</td>
</tr>
<tr>
<td>PIC 1</td>
<td>REV 02</td>
<td>740-014289</td>
<td>T10A00404</td>
<td>XFP-10G-SR</td>
</tr>
<tr>
<td>PIC 2</td>
<td>REV 02</td>
<td>740-014289</td>
<td>T10A00404</td>
<td>XFP-10G-SR</td>
</tr>
<tr>
<td>PIC 3</td>
<td>REV 02</td>
<td>740-014289</td>
<td>T10A00404</td>
<td>XFP-10G-SR</td>
</tr>
</tbody>
</table>
show chassis hardware
(SRX5600 and SRX5800 devices with SRX5000 line SRX5K-SCBE [SCB2] and SRX5K-RE-1800X4 [RE2])

user@host> show chassis hardware
node0:

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>REV 01</td>
<td>760-063936</td>
<td>ACRE2657</td>
<td>Enhanced SRX5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024631</td>
<td>CABY3551</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS13380901P</td>
<td>PS 1.4-2.6kW; 90-264V</td>
</tr>
<tr>
<td>AC in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS133809019</td>
<td>PS 1.4-2.6kW; 90-264V</td>
</tr>
<tr>
<td>AC in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9009210105</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9013115551</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CADN3663</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CADZ3263</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 18</td>
<td>750-054877</td>
<td>CABG6043</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 01</td>
<td>750-062243</td>
<td>CAAE5918</td>
<td>SRX5k IOC3 24XGE+6XLG</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>711-062244</td>
<td>CADX8509</td>
<td>RMPC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xcavr 0</td>
<td>REV 01</td>
<td>740-031980</td>
<td>273363A01891</td>
<td>SFP+-10GE SFP+</td>
</tr>
<tr>
<td>Xcavr 1</td>
<td>REV 01</td>
<td>740-031980</td>
<td>273363A01915</td>
<td>SFP+-10GE SFP+</td>
</tr>
<tr>
<td>Xcavr 2</td>
<td>REV 01</td>
<td>740-031980</td>
<td>ANA08K6</td>
<td>SFP+-10GE SFP+</td>
</tr>
<tr>
<td>Xcavr 3</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AP4079A</td>
<td>SFP+-10GE SFP+</td>
</tr>
<tr>
<td>Xcavr 9</td>
<td>REV 01</td>
<td>740-021308</td>
<td>MUC20G1</td>
<td>SFP+-10GE SFP+</td>
</tr>
<tr>
<td>PIC 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAN MEZZ</td>
<td>REV 15</td>
<td>750-049316</td>
<td>CAEE5845</td>
<td>MPC5E 24XGE OTN Mezz</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 11</td>
<td>750-043157</td>
<td>CACL7452</td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 04</td>
<td>711-043360</td>
<td>CACP1977</td>
<td>SRX5k MPC PMB</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 04</td>
<td>750-049488</td>
<td>CABL4759</td>
<td>10x 10GE SFP+</td>
</tr>
<tr>
<td>PIC 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xcavr 0</td>
<td>REV 01</td>
<td>740-021308</td>
<td>CF36KMOSY</td>
<td>SFP+-10GE SFP+</td>
</tr>
<tr>
<td>Xcavr 1</td>
<td>REV 01</td>
<td>740-021308</td>
<td>MUOMF2</td>
<td>SFP+-10GE SFP+</td>
</tr>
</tbody>
</table>
Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td>JN124FE77AGB</td>
<td></td>
<td>SRX5600</td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>760-063936</td>
<td>ACRE2970</td>
<td>Enhanced SRX5600 Midplane</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024631</td>
<td>CABY3552</td>
<td>Front Panel Display</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS133809028</td>
<td>PS 1.4-2.6kW; 90-264V</td>
</tr>
<tr>
<td>AC in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 03</td>
<td>740-034701</td>
<td>QCS133809027</td>
<td>PS 1.4-2.6kW; 90-264V</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9009218294</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 02</td>
<td>740-056658</td>
<td>9013104758</td>
<td>SRX5k RE-1800X4</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CAEB8180</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 01</td>
<td>750-062257</td>
<td>CADZ3334</td>
<td>SRX5k SCB3</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 18</td>
<td>750-054877</td>
<td>CACJ9834</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Cp</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 01</td>
<td>750-062243</td>
<td>CAEB0981</td>
<td>SRX5k IOC3 24XGE+6XLG</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>711-062244</td>
<td>CAEA4644</td>
<td>RMPC PMB</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>12x 10GE SFP+</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AP41BLH</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AQ400SL</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AP422LJ</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 3</td>
<td>REV 01</td>
<td>740-021308</td>
<td>AMG0RBT</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 9</td>
<td>REV 01</td>
<td>740-021308</td>
<td>MUC2FRG</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>12x 10GE SFP+</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>3x 40GE QSFP+</td>
</tr>
<tr>
<td>WAN MEZZ</td>
<td>REV 15</td>
<td>750-049136</td>
<td>CAEA4837</td>
<td>MPC5E 24XGE OTN Mezz</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 11</td>
<td>750-043157</td>
<td>CACA8784</td>
<td>SRX5k IOC II</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 04</td>
<td>711-043360</td>
<td>CACA8820</td>
<td>SRX5k MPC PMB</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 05</td>
<td>750-049488</td>
<td>CADF0521</td>
<td>10x 10GE SFP+</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>10x 10GE SFP+</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-030658</td>
<td>AD1130A00PV</td>
<td>SFP+-10G-USR</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-031980</td>
<td>AN40MVV</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 01</td>
<td>740-021308</td>
<td>CF36KM37B</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>Xcvr 3</td>
<td>REV 01</td>
<td>740-021308</td>
<td>AD153830DSZ</td>
<td>SFP+-10G-SR</td>
</tr>
<tr>
<td>MIC 1</td>
<td>REV 01</td>
<td>750-049487</td>
<td>CABB5961</td>
<td>2x 40GE QSFP+</td>
</tr>
<tr>
<td>MIC 2</td>
<td>REV 01</td>
<td>750-032986</td>
<td>Q8160513</td>
<td>2x 40GE QSFP+</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>750-044175</td>
<td>ZY2569</td>
<td>SRX5k SPC II</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SRX5k DPC PPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>PIC 3</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>SPU Flow</td>
</tr>
<tr>
<td>Fan Tray</td>
<td>Enhanced Fan Tray</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show chassis hardware
(SRX5400, SRX5600, and SRX5800 devices with SRX5000 line SRX5K-SCB3 [SCB3] with enhanced midplanes and SRX5K-MPC3-100G10G [IOC3] or SRX5K-MPC3-40G10G [IOC3])

```
user@host> show chassis hardware
node0:

Hardware inventory:
Item Version Part number Serial number Description
Chassis JN1250870AGB SRX5600
Midplane REV 01 760-063936 ACRE2578 Enhanced SRX5600 Midplane
FPM Board REV 02 710-017254 KD9027 Front Panel Display
PEM 0 Rev 03 740-034701 QCS13090900T PS 1.4-2.6kW; 90-264V A
Routing Engine 0 REV 01 740-056658 9009196496 SRX5k RE-1800X4
CB 0 REV 01 750-062257 CAEC2501 SRX5k SCB3
CPU BUILTIN BUILTIN SRX5k DPC PPC
PIC 0 BUILTIN BUILTIN SPU Cp
PIC 1 BUILTIN BUILTIN SPU Flow
PIC 2 BUILTIN BUILTIN SPU Flow
PIC 3 BUILTIN BUILTIN SPU Flow
FPC 2 REV 01 750-062243 CAEE5924 SRX5k IOC3 24XGE+6XLG
CPU REV 01 711-062244 CAEB4890 SRX5k IOC3 PMB
PIC 0 BUILTIN BUILTIN 12x 10GE SFP+
PIC 1 BUILTIN BUILTIN 12x 10GE SFP+
PIC 2 BUILTIN BUILTIN 3x 40GE QSFP+
xcvr 0 REV 01 740-038623 MOC13156230449 QSFP+-40G-CU1M
xcvr 2 REV 01 740-038623 MOC13156230449 QSFP+-40G-CU1M
PIC 3 BUILTIN BUILTIN 3x 40GE QSFP+
WAN MEZZ REV 01 750-062682 CAEE5817 24x 10GE SFP+ Mezz
FPC 4 REV 11 750-043157 CACY1595 SRX5k IOC II
CPU REV 04 711-043360 CACZ8879 SRX5k MPC PMB
PIC 2 BUILTIN BUILTIN 10x 10GE SFP+
Xcvr 7 REV 01 740-021308 AD14393017TU SFP+-10G-SR
Xcvr 8 REV 01 740-021308 AD14393015TD SFP+-10G-SR
Xcvr 9 REV 01 740-021308 AD1439301TS SFP+-10G-SR
FPC 5 REV 05 750-044175 ZZ1371 SRX5k SPC II
CPU BUILTIN BUILTIN SRX5k DPC PPC
PIC 0 BUILTIN BUILTIN SPU Flow
PIC 1 BUILTIN BUILTIN SPU Flow
PIC 2 BUILTIN BUILTIN SPU Flow
Fan Tray Enhanced Fan Tray
node1:

Hardware inventory:
Item Version Part number Serial number Description
Chassis JN124FEC0AGB SRX5600
Midplane REV 01 760-063936 ACRE2946 Enhanced SRX5600 Midplane
FPM Board test 710-017254 test Front Panel Display
PEM 1 Rev 03 740-034701 QCS13090904T PS 1.4-2.6kW; 90-264V A
Routing Engine 0 REV 01 740-056658 9009196496 SRX5k RE-1800X4
CPU BUILTIN BUILTIN SRX5k DPC PPC
PIC 0 BUILTIN BUILTIN SPU Cp
PIC 1 BUILTIN BUILTIN SPU Flow
PIC 2 BUILTIN BUILTIN SPU Flow
Xcvr 0 REV 01 740-038623 MOC13156230449 QSFP+-40G-CU1M
Xcvr 2 REV 01 740-038623 MOC13156230449 QSFP+-40G-CU1M
PIC 3 BUILTIN BUILTIN 3x 40GE QSFP+
WAN MEZZ REV 01 750-062682 CAC4425 24x 10GE SFP+ Mezz
FPC 4 REV 11 750-043157 CAC4347 SRX5k IOC II
CPU REV 04 711-043360 CACZ8879 SRX5k MPC PMB
PIC 2 BUILTIN BUILTIN 10x 10GE SFP+
Xcvr 7 REV 01 740-021308 AD14393017TU SFP+-10G-SR
Xcvr 8 REV 01 740-021308 AD14393015TD SFP+-10G-SR
Xcvr 9 REV 01 740-021308 AD14393015TS SFP+-10G-SR
FPC 5 REV 05 750-044175 ZZ1371 SRX5k SPC II
CPU BUILTIN BUILTIN SRX5k DPC PPC
PIC 0 BUILTIN BUILTIN SPU Flow
PIC 1 BUILTIN BUILTIN SPU Flow
PIC 2 BUILTIN BUILTIN SPU Flow
Fan Tray Enhanced Fan Tray
```
### show chassis hardware (SRX4200)

**user@host> show chassis hardware**

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td>DK2816AR00020</td>
<td>16061032317</td>
<td>SRX4200</td>
</tr>
<tr>
<td>Mainboard</td>
<td>REV 01</td>
<td>650-071675</td>
<td></td>
<td>SRX4200</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>SRX Routing Engine</td>
</tr>
<tr>
<td>FPC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>FEB</td>
</tr>
<tr>
<td>PIC 0</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td></td>
<td>8x10G-SFP</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MCI1511530020</td>
<td>SFP+,10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MCI1511530020</td>
<td>SFP+,10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 2</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MCI1511530020</td>
<td>SFP+,10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 3</td>
<td>REV 01</td>
<td>740-038153</td>
<td>MCI1511530020</td>
<td>SFP+,10G-CU3M</td>
</tr>
<tr>
<td>Xcvr 4</td>
<td>REV 01</td>
<td>740-021308</td>
<td>040206A00364</td>
<td>SFP+,10G-SR</td>
</tr>
<tr>
<td>Xcvr 5</td>
<td>REV 01</td>
<td>740-031980</td>
<td>232363A030066</td>
<td>SFP+,10G-SR</td>
</tr>
<tr>
<td>Xcvr 6</td>
<td>REV 01</td>
<td>740-021308</td>
<td>AL705WE</td>
<td>SFP+,10G-SR</td>
</tr>
<tr>
<td>Xcvr 7</td>
<td>REV 01</td>
<td>740-031980</td>
<td>ALN0N6C</td>
<td>SFP+,10G-SR</td>
</tr>
<tr>
<td>Xcvr 8</td>
<td>REV 01</td>
<td>740-030076</td>
<td>APF16220018NK1</td>
<td>SFP+,10G-CU1M</td>
</tr>
<tr>
<td>Power Supply 0</td>
<td>REV 04</td>
<td>740-041741</td>
<td>1GA26241849</td>
<td>JPSU-650W-AC-AFO</td>
</tr>
<tr>
<td>Power Supply 1</td>
<td>REV 04</td>
<td>740-041741</td>
<td>1GA26241846</td>
<td>JPSU-650W-AC-AFO</td>
</tr>
<tr>
<td>Fan Tray 0</td>
<td></td>
<td></td>
<td></td>
<td>SRX4200 0, Front to Back</td>
</tr>
<tr>
<td>Fan Tray 1</td>
<td></td>
<td></td>
<td></td>
<td>SRX4200 1, Front to Back</td>
</tr>
<tr>
<td>Fan Tray 2</td>
<td></td>
<td></td>
<td></td>
<td>SRX4200 2, Front to Back</td>
</tr>
<tr>
<td>Fan Tray 3</td>
<td></td>
<td></td>
<td></td>
<td>SRX4200 3, Front to Back</td>
</tr>
</tbody>
</table>
show chassis hardware clei-models

show chassis hardware clei-models
(SRX5600 and SRX5800 devices with SRX5000 line SRX5K-SCBE [SCB2] and SRX5K-RE-1800X4 [RE2])

user@host> show chassis hardware clei-models node 1
node1:

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>CLEI code</th>
<th>FRU model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midplane</td>
<td>REV 01</td>
<td>710-024803</td>
<td></td>
<td>SRX5800-BP-A</td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 01</td>
<td>710-024632</td>
<td></td>
<td>SRX5800-CRAFT-A</td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 04</td>
<td>740-034724</td>
<td></td>
<td>SRX5800-PWR-4100-AC</td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 05</td>
<td>740-034724</td>
<td></td>
<td>SRX5800-PWR-4100-AC</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 01</td>
<td>740-056658</td>
<td>COUCAATBAA</td>
<td>SRX5K-RE-1800X4</td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 01</td>
<td>750-056587</td>
<td>COUCAATSBA</td>
<td>SRX5K-SCBE</td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 01</td>
<td>750-056587</td>
<td>COUCAATSBA</td>
<td>SRX5K-SCBE</td>
</tr>
<tr>
<td>CB 2</td>
<td>REV 01</td>
<td>750-056587</td>
<td>COUCAATSBA</td>
<td>SRX5K-SCBE</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>FPC 2</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 11</td>
<td>750-043157</td>
<td>COUICBCWBAA</td>
<td>SRX5K-MPC</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 05</td>
<td>750-049486</td>
<td>COUICBCYBA</td>
<td>SRX-MIC-1X100G-CFP</td>
</tr>
<tr>
<td>MIC 1</td>
<td>REV 04</td>
<td>750-049488</td>
<td>COUICBCXBA</td>
<td>SRX-MIC-10XG-SFP</td>
</tr>
<tr>
<td>FPC 4</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPC 7</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPC 8</td>
<td>REV 11</td>
<td>750-043157</td>
<td>COUICBCWBAA</td>
<td>SRX5K-MPC</td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 05</td>
<td>750-049486</td>
<td>COUICBCYBA</td>
<td>SRX-MIC-1X100G-CFP</td>
</tr>
<tr>
<td>FPC 9</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPC 10</td>
<td>REV 18</td>
<td>750-054877</td>
<td>COUCATLBA</td>
<td>SRX5K-SPC-4-15-320</td>
</tr>
<tr>
<td>CPU</td>
<td>BUILTIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan Tray 0</td>
<td>REV 04</td>
<td>740-035409</td>
<td></td>
<td>SRX5800-HC-FAN</td>
</tr>
<tr>
<td>Fan Tray 1</td>
<td>REV 04</td>
<td>740-035409</td>
<td></td>
<td>SRX5800-HC-FAN</td>
</tr>
</tbody>
</table>
show chassis routing-engine (View)

Supported Platforms  SRX Series, vSRX

Syntax  show chassis routing-engine

Release Information  Command introduced in Junos OS Release 9.5.

Description  Display the Routing Engine status of the chassis cluster.

Required Privilege  Level view

Related Documentation  • cluster (Chassis) on page 411
• request system snapshot (Maintenance)

List of Sample Output  show chassis routing-engine (Sample 1 - SRX550M) on page 572
show chassis routing-engine (Sample 2 - vSRX) on page 572

Output Fields  Table 60 on page 571 lists the output fields for the show chassis routing-engine command. Output fields are listed in the approximate order in which they appear.

Table 60: show chassis routing-engine Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Routing Engine temperature. (Not available for vSRX deployments.)</td>
</tr>
<tr>
<td>CPU temperature</td>
<td>CPU temperature. (Not available for vSRX deployments.)</td>
</tr>
<tr>
<td>Total memory</td>
<td>Total memory available on the system.</td>
</tr>
<tr>
<td></td>
<td>NOTE: Starting with Junos OS Release 15.1x49-D70 and Junos OS Release 17.3R1, there is a change in the method for calculating the memory utilization by a Routing Engine. The inactive memory is now subtracted from the total available memory. There is thus, a decrease in the reported value for used memory; as the inactive memory is now considered as free.</td>
</tr>
<tr>
<td>Control plane memory</td>
<td>Memory available for the control plane.</td>
</tr>
<tr>
<td>Data plane memory</td>
<td>Memory reserved for data plane processing.</td>
</tr>
<tr>
<td>CPU utilization</td>
<td>Current CPU utilization statistics on the control plane core.</td>
</tr>
<tr>
<td>User</td>
<td>Current CPU utilization in user mode on the control plane core.</td>
</tr>
<tr>
<td>Background</td>
<td>Current CPU utilization in nice mode on the control plane core.</td>
</tr>
<tr>
<td>Kernel</td>
<td>Current CPU utilization in kernel mode on the control plane core.</td>
</tr>
</tbody>
</table>
Table 60: show chassis routing-engine Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupt</td>
<td>Current CPU utilization in interrupt mode on the control plane core.</td>
</tr>
<tr>
<td>Idle</td>
<td>Current CPU utilization in idle mode on the control plane core.</td>
</tr>
<tr>
<td>Model</td>
<td>Routing Engine model.</td>
</tr>
<tr>
<td>Start time</td>
<td>Routing Engine start time.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Length of time the Routing Engine has been up (running) since the last start.</td>
</tr>
<tr>
<td>Last reboot reason</td>
<td>Reason for the last reboot of the Routing Engine.</td>
</tr>
<tr>
<td>Load averages</td>
<td>The average number of threads waiting in the run queue or currently executing over 1-, 5-, and 15-minute periods.</td>
</tr>
</tbody>
</table>

Sample Output

table display

Sample Output

table display

Sample Output
Interrupt 6 percent
Idle 88 percent
Model VSRX RE
Start time 2015-03-03 07:04:18 UTC
Uptime 2 days, 11 hours, 51 minutes, 11 seconds
Last reboot reason Router rebooted after a normal shutdown.
Load averages:

<table>
<thead>
<tr>
<th></th>
<th>1 minute</th>
<th>5 minute</th>
<th>15 minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load average</td>
<td>0.07</td>
<td>0.04</td>
<td>0.06</td>
</tr>
</tbody>
</table>
show configuration chassis cluster traceoptions

Supported Platforms  SRX Series, vSRX

Syntax  show configuration chassis cluster traceoptions


Description  Display tracing options for the chassis cluster redundancy process.

Required Privilege  view

Related Documentation  •  cluster (Chassis) on page 411
•  traceoptions (Chassis Cluster) on page 473

List of Sample Output  show configuration chassis cluster traceoptions on page 574

Output Fields  Table 61 on page 574 lists the output fields for the show configuration chassis cluster traceoptions command. Output fields are listed in the approximate order in which they appear.

Table 61: show configuration chassis cluster traceoptions Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>Name of the file that receives the output of the tracing operation.</td>
</tr>
<tr>
<td>size</td>
<td>Size of each trace file.</td>
</tr>
<tr>
<td>files</td>
<td>Maximum number of trace files.</td>
</tr>
</tbody>
</table>

Sample Output

show configuration chassis cluster traceoptions

user@host> show configuration chassis cluster traceoptions
file chassis size 10k files 300;
level all;
set date ntp

Supported Platforms  SRX Series

Syntax  set date ntp {
  server <server>;
  force;
  key <key>;
  source-address <source-address>;
}

Release Information  Command introduced in Junos OS Release 15.1X49-D70.

Description  Set the date and local time. If reject mode is enabled and the system rejected the update from the NTP server because it exceeds the configured threshold value, an administrator has two options to overrule the reject mode action: manually set the date and time in YYYYMMDDhhmm.ss format, or force synchronization of device time with the NTP server update by specifying the force option.

Options  ntp—Use a NTP server to synchronize the current date and time setting on the SRX series devices.

Server <server>—Specify the IP address of one or more NTP servers.

force—Force system date and time to update to NTP server values. The device date and time are synchronized with the NTP proposed date and time even if reject is set as the action and the difference between the device time and NTP proposed time exceeds the default or the configured threshold value.

key <key>—Specify a key number to authenticate the NTP server used to synchronize the date and time. You must specify the same key number used to authenticate the server, configured at the [edit system ntp authentication-key number] hierarchy level.

source-address <source-address>—Specify the source address that the SRX Series devices use to contact the remote NTP server.

Required Privilege Level  view

Related Documentation  •  show system ntp threshold on page 591
  •  ntp on page 448
  •  ntp threshold on page 449
  •  NTP Time Synchronization on SRX Series Devices on page 277

List of Sample Output  set date ntp force on page 576
Output Fields  When you enter this command, you are provided feedback on the status of your request.

Sample Output

set date ntp force

user@host> set date ntp force
18 Jul 16:52:43 ntpdate[3319]: NTP update request has been accepted, The time offset is 147605840.624994 sec from the time server 66.129.255.62 which is larger than the maximum threshold of 400 sec allowed.
show interfaces (Gigabit Ethernet)

**Supported Platforms**  
SRX340, SRX345

**Syntax**  
show interfaces ge-fpc /pic/port  
<brief | detail | extensive | terse>  
<descriptions>  
<media>  
<snmp-index snmp-index>  
<statistics>

**Release Information**  
Command introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

**Description**  
Display status information about the specified Gigabit Ethernet interface.

**Options**  
`ge-fpc/pic/port`—Display standard information about the specified Gigabit Ethernet interface.

`brief | detail | extensive | terse`—(Optional) Display the specified level of output.

`descriptions`—(Optional) Display interface description strings.

`media`—(Optional) Display media-specific information about network interfaces.

`snmp-index snmp-index`—(Optional) Display information for the specified SNMP index of the interface.

`statistics`—(Optional) Display static interface statistics.

**Additional Information**  
In a logical system, this command displays information only about the logical interfaces and not about the physical interfaces.

**Required Privilege Level**  
view

**Related Documentation**  
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
- show security mka sessions for SRX device on page 600
- show security macsec statistics for SRX device on page 594

**List of Sample Output**  
show interfaces (Gigabit Ethernet) (for Fabric) on page 587  
show interfaces detail for Fabric on page 588
**Output Fields**  Table 62 on page 578 describes the output fields for the `show interfaces` (Gigabit Ethernet) command. Output fields are listed in the approximate order in which they appear. For Gigabit Ethernet IQ and IQE PICs, the traffic and MAC statistics vary by interface type. For more information, see Table 63 on page 587.

### Table 62: show interfaces (Gigabit Ethernet) Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Physical Interface</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the “Enabled Field” section under.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Index number of the physical interface, which reflects its initialization sequence.</td>
<td>detail none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail none</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation being used on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link-mode</td>
<td>Type of the link used for transmission.</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running.</td>
<td>All levels</td>
</tr>
<tr>
<td>MAC-REWRITE Error</td>
<td>Error of the MAC-REWRITE.</td>
<td></td>
</tr>
<tr>
<td>Loopback</td>
<td>Loopback status: Enabled or Disabled. If loopback is enabled, type of loopback: Local or Remote.</td>
<td>All levels</td>
</tr>
<tr>
<td>Source filtering</td>
<td>Source filtering status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>LAN-PHY mode</td>
<td>10-Gigabit Ethernet interface operating in Local Area Network Physical Layer Device (LAN PHY) mode. LAN PHY allows 10-Gigabit Ethernet wide area links to use existing Ethernet applications.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flow control</td>
<td>Flow control status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Auto-negotiation</td>
<td>(Gigabit Ethernet interfaces) Autonegotiation status: Enabled or Disabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Remote-fault</td>
<td>(Gigabit Ethernet interfaces) Remote fault status:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Online—Autonegotiation is manually configured as online.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Offline—Autonegotiation is manually configured as offline.</td>
<td></td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface flags</td>
<td>Information about the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link flags</td>
<td>Information about the link.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 62: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoS queues</td>
<td>Number of CoS queues configured.</td>
<td>detail none</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down, in milliseconds (ms).</td>
<td>detail none</td>
</tr>
<tr>
<td>Current address</td>
<td>Configured MAC address.</td>
<td>detail none</td>
</tr>
<tr>
<td>Hardware address</td>
<td>Hardware MAC address.</td>
<td>detail none</td>
</tr>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up. The format is Last flapped: year-month-day hour:minute:second:timezone (hour:minute:second ago). For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago).</td>
<td>detail none</td>
</tr>
<tr>
<td>Input Rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps). The value in this field also includes the Layer 2 overhead bytes for ingress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td>None</td>
</tr>
<tr>
<td>Output Rate</td>
<td>Output rate in bps and pps. The value in this field also includes the Layer 2 overhead bytes for egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td>None</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Egress account overhead</td>
<td>Layer 2 overhead in bytes that is accounted in the interface statistics for egress traffic.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Ingress account overhead</td>
<td>Layer 2 overhead in bytes that is accounted in the interface statistics for ingress traffic.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>- <strong>Input bytes</strong>—Number of bytes received on the interface. The value in this field also includes the Layer 2 overhead bytes for ingress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Output bytes</strong>—Number of bytes transmitted on the interface. The value in this field also includes the Layer 2 overhead bytes for egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Input packets</strong>—Number of packets received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- <strong>Output packets</strong>—Number of packets transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gigabit Ethernet and 10-Gigabit Ethernet IQ PICs count the overhead and CRC bytes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Gigabit Ethernet IQ PICs, the input byte counts vary by interface type.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 62: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress queues</td>
<td>Total number of egress queues supported on the specified interface.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>NOTE:</strong> In DPCs that are not of the enhanced type, such as DPC 40x1GE R, DPCE 20x1GE + 2x10GE R, or DPCE 40x1GE R, you might notice a discrepancy in the output of the <em>show interfaces</em> command because incoming packets might be counted in the Egress queues section of the output. This problem occurs on non-enhanced DPCs because the egress queue statistics are polled from IMQ (Inbound Message Queuing) block of the I-chip. The IMQ block does not differentiate between ingress and egress WAN traffic; as a result, the combined statistics are displayed in the egress queue counters on the Routing Engine. In a simple VPLS scenario, if there is no MAC entry in DMAC table (by sending unidirectional traffic), traffic is flooded and the input traffic is accounted in IMQ. For bidirectional traffic (MAC entry in DMAC table), if the outgoing interface is on the same I-chip then both ingress and egress statistics are counted in a combined way. If the outgoing interface is on a different I-chip or FPC, then only egress statistics are accounted in IMQ. This behavior is expected with non-enhanced DPCs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queue counters (Egress)</td>
<td>CoS queue number and its associated user-configured forwarding class name.</td>
<td>detail extensive</td>
</tr>
<tr>
<td><strong>NOTE:</strong> Due to accounting space limitations on certain Type 3 FPCs (which are supported in M320 and T640 routers), the <em>Dropped packets</em> field does not always display the correct value for queue 6 or queue 7 for interfaces on 10-port 1-Gigabit Ethernet PICs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active alarms and Active defects</td>
<td>Ethernet-specific defects that can prevent the interface from passing packets. When a defect persists for a certain amount of time, it is promoted to an alarm. Based on the router configuration, an alarm can ring the red or yellow alarm bell on the router, or turn on the red or yellow alarm LED on the craft interface. These fields can contain the value None or Link.</td>
<td></td>
</tr>
<tr>
<td><strong>NOTE:</strong> There are no active defects or alarms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Link</strong>—Interface has lost its link state, which usually means that the cable is unplugged, the far-end system has been turned off, or the PIC is malfunctioning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface transmit statistics</td>
<td>Status of the <em>interface-transmit-statistics</em> configuration: Enabled or Disabled.</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Enabled</strong>—When the <em>interface-transmit-statistics</em> statement is included in the configuration, if this is configured, the interface statistics show the actual transmitted load on the interface.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Disabled</strong>—When the <em>interface-transmit-statistics</em> statement is not included in the configuration, if this is not configured, the interface statistics show the offered load on the interface.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 62: show interfaces (Gigabit Ethernet) Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACSec statistics</td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Secure Channel Transmitted:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Protected Packets, Encrypted Packets, Protected Bytes, Encrypted Bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Secure Channel Received:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Accepted Packets, Validated Bytes, Decrypted Bytes</td>
<td></td>
</tr>
<tr>
<td>OTN FEC statistics</td>
<td>The forward error correction (FEC) counters provide the following statistics:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Corrected Errors—Count of corrected errors in the last second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Corrected Error Ratio—Corrected error ratio in the last 25 seconds. For example, 1e-7 is 1 error per 10 million bits.</td>
<td></td>
</tr>
<tr>
<td>PCS statistics</td>
<td>(10-Gigabit Ethernet interfaces) Displays Physical Coding Sublayer (PCS) fault conditions from the WAN PHY or the LAN PHY device.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Bit errors—Number of seconds during which at least one bit error rate (BER) occurred while the PCS receiver is operating in normal mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Errored blocks—Number of seconds when at least one errored block occurred while the PCS receiver is operating in normal mode.</td>
<td></td>
</tr>
</tbody>
</table>
Table 62: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC statistics</td>
<td><strong>Receive and Transmit</strong> statistics reported by the PIC’s MAC subsystem, including the following:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• <strong>Total octets and total packets</strong>—Total number of octets and packets. For Gigabit Ethernet IQ PICs, the received octets count varies by interface type.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Unicast packets, Broadcast packets, and Multicast packets</strong>—Number of unicast, broadcast, and multicast packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>CRC/Align errors</strong>—Total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, and had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a nonintegral number of octets (Alignment Error).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>FIFO error</strong>—Number of FIFO errors that are reported by the ASIC on the PIC. If this value is ever nonzero, the PIC or a cable is probably malfunctioning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>MAC control frames</strong>—Number of MAC control frames.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>MAC pause frames</strong>—Number of MAC control frames with pause operational code.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Oversized frames</strong>—There are two possible conditions regarding the number of oversized frames:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packet length exceeds 1518 octets, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packet length exceeds MRU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Jabber frames</strong>—Number of frames that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either an FCS error or an alignment error. This definition of jabber is different from the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition in which any packet exceeds 20 ms. The allowed range to detect jabber is from 20 ms to 150 ms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Fragment frames</strong>—Total number of packets that were less than 64 octets in length (excluding framing bits, but including FCS octets) and had either an FCS error or an alignment error. Fragment frames normally increment because both runts (which are normal occurrences caused by collisions) and noise hits are counted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>VLAN tagged frames</strong>—Number of frames that are VLAN tagged. The system uses the TPID of 0x8100 in the frame to determine whether a frame is tagged or not.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>NOTE</strong>: The 20-port Gigabit Ethernet MIC (MIC-3D-20GE-SFP) does not have hardware counters for VLAN frames. Therefore, the <strong>VLAN tagged frames</strong> field displays 0 when the <strong>show interfaces</strong> command is executed on a 20-port Gigabit Ethernet MIC. In other words, the number of VLAN tagged frames cannot be determined for the 20-port Gigabit Ethernet MIC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>Code violations</strong>—Number of times an event caused the PHY to indicate “Data reception error” or “invalid data symbol error.”</td>
<td></td>
</tr>
<tr>
<td>OTN Received</td>
<td>APS/PCC0: 0x02, APS/PCC1: 0x11, APS/PCC2: 0x47, APS/PCC3: 0x58 Payload Type: 0x08</td>
<td>extensive</td>
</tr>
<tr>
<td>Overhead Bytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTN Transmitted</td>
<td>APS/PCC0: 0x00, APS/PCC1: 0x00, APS/PCC2: 0x00, APS/PCC3: 0x00 Payload Type: 0x08</td>
<td>extensive</td>
</tr>
<tr>
<td>Overhead Bytes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Filter statistics  

**Receive and Transmit** statistics reported by the PIC's MAC address filter subsystem. The filtering is done by the content-addressable memory (CAM) on the PIC. The filter examines a packet's source and destination MAC addresses to determine whether the packet should enter the system or be rejected.

- **Input packet count**—Number of packets received from the MAC hardware that the filter processed.
- **Input packet rejects**—Number of packets that the filter rejected because of either the source MAC address or the destination MAC address.
- **Input DA rejects**—Number of packets that the filter rejected because the destination MAC address of the packet is not on the accept list. It is normal for this value to increment. When it increments very quickly and no traffic is entering the router from the far-end system, either there is a bad ARP entry on the far-end system, or multicast routing is not on and the far-end system is sending many multicast packets to the local router (which the router is rejecting).
- **Input SA rejects**—Number of packets that the filter rejected because the source MAC address of the packet is not on the accept list. The value in this field should increment only if source MAC address filtering has been enabled. If filtering is enabled, if the value increments quickly, and if the system is not receiving traffic that it should from the far-end system, it means that the user-configured source MAC addresses for this interface are incorrect.
- **Output packet count**—Number of packets that the filter has given to the MAC hardware.
- **Output packet pad count**—Number of packets the filter padded to the minimum Ethernet size (60 bytes) before giving the packet to the MAC hardware. Usually, padding is done only on small ARP packets, but some very small IP packets can also require padding. If this value increments rapidly, either the system is trying to find an ARP entry for a far-end system that does not exist or it is misconfigured.
- **Output packet error count**—Number of packets with an indicated error that the filter was given to transmit. These packets are usually aged packets or are the result of a bandwidth problem on the FPC hardware. On a normal system, the value of this field should not increment.
- **CAM destination filters, CAM source filters**—Number of entries in the CAM dedicated to destination and source MAC address filters. There can only be up to 64 source entries. If source filtering is disabled, which is the default, the values for these fields should be 0.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter statistics</td>
<td><strong>Receive and Transmit</strong> statistics reported by the PIC's MAC address filter subsystem. The filtering is done by the content-addressable memory (CAM) on the PIC. The filter examines a packet's source and destination MAC addresses to determine whether the packet should enter the system or be rejected.</td>
<td>extensive</td>
</tr>
</tbody>
</table>

PMA PHY  

(10-Gigabit Ethernet interfaces, WAN PHY mode) SONET error information:  

- **Seconds**—Number of seconds the defect has been active.
- **Count**—Number of times that the defect has gone from inactive to active.
- **State**—State of the error. Any state other than **OK** indicates a problem.

Subfields are:

- **PHY Lock**—Phase-locked loop
- **PHY Light**—Loss of optical signal
Table 62: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIS section</td>
<td>(10-Gigabit Ethernet interfaces, WAN PHY mode) SONET error information:</td>
<td>extensive</td>
</tr>
<tr>
<td>- Seconds</td>
<td>Number of seconds the defect has been active.</td>
<td></td>
</tr>
<tr>
<td>- Count</td>
<td>Number of times that the defect has gone from inactive to active.</td>
<td></td>
</tr>
<tr>
<td>- State</td>
<td>State of the error. Any state other than OK indicates a problem.</td>
<td></td>
</tr>
<tr>
<td>Subfields are:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- BIP-B1</td>
<td>Bit interleaved parity for SONET section overhead</td>
<td></td>
</tr>
<tr>
<td>- SEF</td>
<td>Severely errored framing</td>
<td></td>
</tr>
<tr>
<td>- LOL</td>
<td>Loss of light</td>
<td></td>
</tr>
<tr>
<td>- LOF</td>
<td>Loss of frame</td>
<td></td>
</tr>
<tr>
<td>- ES-S</td>
<td>Errored seconds (section)</td>
<td></td>
</tr>
<tr>
<td>- SES-S</td>
<td>Severely errored seconds (section)</td>
<td></td>
</tr>
<tr>
<td>- SEFS-S</td>
<td>Severely errored framing seconds (section)</td>
<td></td>
</tr>
</tbody>
</table>

Logical Interface

<table>
<thead>
<tr>
<th>Logical interface</th>
<th>Name of the logical interface.</th>
<th>All levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Index number of the logical interface, which reflects its initialization sequence.</td>
<td>detail none</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP interface index number for the logical interface.</td>
<td>detail none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>VLAN-Tag</td>
<td>Rewrite profile applied to incoming or outgoing frames on the outer (Out) VLAN tag or for both the outer and inner (In) VLAN tags.</td>
<td>brief detail none</td>
</tr>
<tr>
<td>- push</td>
<td>An outer VLAN tag is pushed in front of the existing VLAN tag.</td>
<td></td>
</tr>
<tr>
<td>- pop</td>
<td>The outer VLAN tag of the incoming frame is removed.</td>
<td></td>
</tr>
<tr>
<td>- swap</td>
<td>The outer VLAN tag of the incoming frame is overwritten with the user-specified VLAN tag information.</td>
<td></td>
</tr>
<tr>
<td>- push-push</td>
<td>Two VLAN tags are pushed in from the incoming frame.</td>
<td></td>
</tr>
<tr>
<td>- swap-push</td>
<td>The outer VLAN tag of the incoming frame is replaced by a user-specified VLAN tag value. A user-specified outer VLAN tag is pushed in front. The outer tag becomes an inner tag in the final frame.</td>
<td></td>
</tr>
<tr>
<td>- swap-swap</td>
<td>Both the inner and the outer VLAN tags of the incoming frame are replaced by the user-specified VLAN tag value.</td>
<td></td>
</tr>
<tr>
<td>- pop-swap</td>
<td>The outer VLAN tag of the incoming frame is removed, and the inner VLAN tag of the incoming frame is replaced by the user-specified VLAN tag value. The inner tag becomes the outer tag in the final frame.</td>
<td></td>
</tr>
<tr>
<td>- pop-pop</td>
<td>Both the outer and inner VLAN tags of the incoming frame are removed.</td>
<td></td>
</tr>
</tbody>
</table>
Table 62: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demux</td>
<td>IP demultiplexing (demux) value that appears if this interface is used as the demux underlying interface. The output is one of the following:</td>
<td>detail none</td>
</tr>
<tr>
<td></td>
<td>- Source Family Inet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Destination Family Inet</td>
<td></td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>ACI VLAN: Dynamic</td>
<td>Name of the dynamic profile that defines the agent circuit identifier (ACI) interface set. If configured, the ACI interface set enables the underlying Ethernet interface to create dynamic VLAN subscriber interfaces based on ACI information.</td>
<td>brief detail none</td>
</tr>
<tr>
<td>Profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol family.</td>
<td>detail none</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit size on the logical interface.</td>
<td>detail none</td>
</tr>
<tr>
<td>Neighbor Discovery</td>
<td>NDP statistics for protocol inet6 under logical interface statistics.</td>
<td>All levels</td>
</tr>
<tr>
<td>Protocol (NDP)Queue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>- Max nh cache—Maximum interface neighbor discovery nexthop cache size.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- New hold nh limit—Maximum number of new unresolved nexthops.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Curr nh cnt—Current number of resolved nexthops in the NDP queue.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Curr new hold cnt—Current number of unresolved nexthops in the NDP queue.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- NH drop cnt—Number of NDP requests not serviced.</td>
<td></td>
</tr>
<tr>
<td>Dynamic Profile</td>
<td>Name of the dynamic profile that was used to create this interface configured with a Point-to-Point Protocol over Ethernet (PPPoE) family.</td>
<td>detail none</td>
</tr>
<tr>
<td>Service Name Table</td>
<td>Name of the service name table for the interface configured with a PPPoE family.</td>
<td>detail none</td>
</tr>
<tr>
<td>Max Sessions</td>
<td>Maximum number of PPPoE logical interfaces that can be activated on the underlying interface.</td>
<td>detail none</td>
</tr>
<tr>
<td>Duplicate Protection</td>
<td>State of PPPoE duplicate protection: On or Off. When duplicate protection is configured for the underlying interface, a dynamic PPPoE logical interface cannot be activated when an existing active logical interface is present for the same PPPoE client.</td>
<td>detail none</td>
</tr>
<tr>
<td>Direct Connect</td>
<td>State of the configuration to ignore DSL Forum VSAs: On or Off. When configured, the router ignores any of these VSAs received from a directly connected CPE device on the interface.</td>
<td>detail none</td>
</tr>
<tr>
<td>AC Name</td>
<td>Name of the access concentrator.</td>
<td>detail none</td>
</tr>
<tr>
<td>Maximum labels</td>
<td>Maximum number of MPLS labels configured for the MPLS protocol family on the logical interface.</td>
<td>detail none</td>
</tr>
</tbody>
</table>
Table 62: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic statistics</td>
<td>Number and rate of bytes and packets received and transmitted on the specified interface set.</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Input bytes, Output bytes—Number of bytes received and transmitted on the interface set. The value in this field also includes the Layer 2 overhead bytes for ingress or egress traffic on Ethernet interfaces if you enable accounting of Layer 2 overhead at the PIC level or the logical interface level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets, Output packets—Number of packets received and transmitted on the interface set.</td>
<td></td>
</tr>
<tr>
<td>Local statistics</td>
<td>Number and rate of bytes and packets destined to the router.</td>
<td>detail</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail</td>
</tr>
<tr>
<td>Transit statistics</td>
<td>Number and rate of bytes and packets transiting the switch.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: For Gigabit Ethernet intelligent queuing 2 (IQ2) interfaces, the logical interface egress statistics might not accurately reflect the traffic on the wire when output shaping is applied. Traffic management output shaping might drop packets after they are tallied by the Output bytes and Output packets interface counters. However, correct values display for both of these egress statistics when per-unit scheduling is enabled for the Gigabit Ethernet IQ2 physical interface, or when a single logical interface is actively using a shared scheduler.</td>
<td></td>
</tr>
<tr>
<td>Route Table</td>
<td>Route table in which the logical interface address is located. For example, 0 refers to the routing table inet.0.</td>
<td>detail none</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about protocol family flags.</td>
<td>detail</td>
</tr>
<tr>
<td>Donor interface</td>
<td>(Unnumbered Ethernet) Interface from which an unnumbered Ethernet interface borrows an IPv4 address.</td>
<td>detail none</td>
</tr>
<tr>
<td>Preferred source address</td>
<td>(Unnumbered Ethernet) Secondary IPv4 address of the donor loopback interface that acts as the preferred source address for the unnumbered Ethernet interface.</td>
<td>detail none</td>
</tr>
<tr>
<td>Input Filters</td>
<td>Names of any input filters applied to this interface. If you specify a precedence value for any filter in a dynamic profile, filter precedence values appear in parentheses next to all interfaces.</td>
<td>detail</td>
</tr>
<tr>
<td>Output Filters</td>
<td>Names of any output filters applied to this interface. If you specify a precedence value for any filter in a dynamic profile, filter precedence values appear in parentheses next to all interfaces.</td>
<td>detail</td>
</tr>
<tr>
<td>Mac-Validate Failures</td>
<td>Number of MAC address validation failures for packets and bytes. This field is displayed when MAC address validation is enabled for the logical interface.</td>
<td>detail none</td>
</tr>
<tr>
<td>Addresses, Flags</td>
<td>Information about the address flags.</td>
<td>detail none</td>
</tr>
<tr>
<td>protocol-family</td>
<td>Protocol family configured on the logical interface. If the protocol is inet, the IP address of the interface is also displayed.</td>
<td>brief</td>
</tr>
</tbody>
</table>

Copyright © 2017, Juniper Networks, Inc.
Table 62: show interfaces (Gigabit Ethernet) Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>Information about the address flag.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Broadcast address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Table 63: Gigabit Ethernet IQ PIC Traffic and MAC Statistics by Interface Type

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Sample Command</th>
<th>Byte and Octet Counts Include</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound physical interface</td>
<td><code>show interfaces ge-0/3/0 extensive</code></td>
<td>Traffic statistics:</td>
<td>The additional 4 bytes are for the CRC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input bytes: 496 bytes per packet, representing the Layer 2 packet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAC statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Received octets: 500 bytes per packet, representing the Layer 2 packet + 4 bytes</td>
<td></td>
</tr>
<tr>
<td>Inbound logical interface</td>
<td><code>show interfaces ge-0/3/0.50 extensive</code></td>
<td>Traffic statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input bytes: 478 bytes per packet, representing the Layer 3 packet</td>
<td></td>
</tr>
<tr>
<td>Outbound physical interface</td>
<td><code>show interfaces ge-0/0/0 extensive</code></td>
<td>Traffic statistics:</td>
<td>For input bytes, the additional 12 bytes include 6 bytes for the destination MAC address plus 4 bytes for VLAN plus 2 bytes for the Ethernet type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input bytes: 490 bytes per packet, representing the Layer 3 packet + 12 bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAC statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Received octets: 478 bytes per packet, representing the Layer 3 packet</td>
<td></td>
</tr>
<tr>
<td>Outbound logical interface</td>
<td><code>show interfaces ge-0/0/0.50 extensive</code></td>
<td>Traffic statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input bytes: 478 bytes per packet, representing the Layer 3 packet</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show interfaces (Gigabit Ethernet) (for Fabric)

```
user@host> show interfaces ge-0/0/2
Physical interface: ge-0/0/2, Enabled, Physical link is Up
Interface index: 153, SNMP ifIndex: 513
```
Link-level type: 64, MTU: 9014, LAN-PHY mode, Link-mode: Full-duplex,
Speed: 1000mbps, BPDU Error: None, MAC-REWRITE Error: None,
Loopback: Disabled, Source filtering: Disabled, Flow control: Disabled,
Auto-negotiation: Enabled, Remote fault: Online
Device flags   : Present Running
Interface flags: SNMP-Traps Internal: 0x0
Link flags     : None
CoS queues     : 8 supported, 8 maximum usable queues
Current address: 30:7c:5e:44:98:f0, Hardware address: 30:7c:5e:44:98:43
Last flapped   : 2016-07-14 19:32:16 UTC (17:52:04 ago)
Input rate     : 2328 bps (1 pps)
Output rate    : 2264 bps (1 pps)
Active alarms  : None
Active defects : None
Interface transmit statistics: Disabled

Logical interface ge-0/0/2.0 (Index 77) (SNMP ifIndex 537)
Flags: Up SNMP-Traps 0x0 Encapsulation: ENET2
Input packets : 139146
Output packets: 134074
Security: Zone: Null
Protocol aenet, AE bundle: fab0.0 Link Index: 0

show interfaces detail for Fabric

user@host> show interfaces ge-0/0/2 detail
Physical interface: ge-0/0/2, Enabled, Physical link is Up
Interface index: 153, SNMP ifIndex: 513, Generation: 156
Link-level type: 64, MTU: 9014, LAN-PHY mode, Link-mode: Full-duplex,
Speed: 1000mbps, BPDU Error: None, MAC-REWRITE Error: None,
Loopback: Disabled, Source filtering: Disabled, Flow control: Disabled,
Auto-negotiation: Enabled, Remote fault: Online
Device flags   : Present Running
Interface flags: SNMP-Traps Internal: 0x0
Link flags     : None
CoS queues     : 8 supported, 8 maximum usable queues
Hold-times     : Up 0 ms, Down 0 ms
Current address: 30:7c:5e:44:98:f0, Hardware address: 30:7c:5e:44:98:43
Last flapped   : 2016-07-14 19:32:16 UTC (17:52:25 ago)
Statistics last cleared: Never
Traffic statistics:
Input bytes : 20300010 2328 bps
Output bytes : 19041600 2264 bps
Input packets: 139189 1 pps
Output packets: 134116 1 pps
Egress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
0 134121 134121 0
1 0 0 0
2 0 0 0
3 0 0 0
Queue number: Mapped forwarding classes
0 best-effort
1 expedited-forwarding
2 assured-forwarding
3 network-control
Active alarms : None
Active defects : None
Interface transmit statistics: Disabled
MACSec statistics:
  Output
    Secure Channel Transmitted
    Protected Packets : 0
    Encrypted Packets : 128645
    Protected Bytes : 0
    Encrypted Bytes : 16723638
  Input
    Secure Channel Received
    Accepted Packets : 128647
    Validated Bytes : 0
    Decrypted Bytes : 16723790

Logical interface ge-0/0/2.0 (Index 77) (SNMP ifIndex 537) (Generation 144)
  Flags: Up SNMP-Traps 0x0 Encapsulation: ENET2
  Traffic statistics:
    Input bytes : 20300152
    Output bytes : 19149160
    Input packets: 139190
    Output packets: 134116
  Local statistics:
    Input bytes : 748678
    Output bytes : 871206
    Input packets: 5273
    Output packets: 5379
  Transit statistics:
    Input bytes : 19551474  2328 bps
    Output bytes : 18277954  2264 bps
    Input packets: 133917  1pps
    Output packets: 128737  1pps
  Security: Zone: Null
  Flow Statistics:
    Flow Input statistics:
      Self packets : 0
      ICMP packets : 0
      VPN packets : 0
      Multicast packets : 0
      Bytes permitted by policy : 0
      Connections established : 0
    Flow Output statistics:
      Multicast packets : 0
      Bytes permitted by policy : 0
    Flow error statistics (Packets dropped due to):
      Address spoofing: 0
      Authentication failed: 0
      Incoming NAT errors: 0
      Invalid zone received packet: 0
      Multiple user authentications: 0
      Multiple incoming NAT: 0
      No parent for a gate: 0
      No one interested in self packets: 0
      No minor session: 0
      No more sessions: 0
      No NAT gate: 0
      No route present: 0
      No SA for incoming SPI: 0
      No tunnel found: 0
      No session for a gate: 0
No zone or NULL zone binding       0
Policy denied:                     0
Security association not active:   0
TCP sequence number out of window: 0
Syn-attack protection:             0
User authentication errors:        0
Protocol aenet, AE bundle: fab0.0 Link Index: 0, Generation: 159,
Route table: 0
show system ntp threshold

Supported Platforms  
SRX Series

Syntax  
show system ntp threshold

Release Information  
Command introduced in Junos OS Release 15.1X49-D70.

Description  
Display the current threshold and reject mode configured information.

Required Privilege Level  
view

Related Documentation  
- set date ntp on page 575
- ntp threshold on page 449
- ntp on page 448
- NTP Time Synchronization on SRX Series Devices on page 277

List of Sample Output  
show system ntp threshold on page 591

Output Fields  
lists the output fields for the Table 64 on page 591 show system ntp threshold command. Output fields are listed in the approximate order in which they appear.

Table 64: show system ntp threshold Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP threshold</td>
<td>Assign a threshold value for Network Time Protocol (NTP) adjustment that is outside of the acceptable NTP update and specify whether to accept or reject NTP synchronization when the proposed time from the NTP server exceeds the configured threshold value.</td>
</tr>
<tr>
<td>Success Criteria</td>
<td>Verifies the NTP threshold and provide the status of NTP adjustment mode (accept or reject).</td>
</tr>
</tbody>
</table>

Sample Output

show system ntp threshold

user@host> show system ntp threshold
NTP threshold:  400 sec
NTP adjustment reject mode is enabled
Success Criteria: verify threshold and reject mode can appear after user configuration.
**show security macsec connections**

**Supported Platforms**  
SRX340, SRX345

**Syntax**  
```
show security macsec connections
<interface interface-name>
```

**Release Information**  
Command introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

**Description**  
Display the status of the active MACsec connections on the device.

**Options**  
none—Display MACsec connection information for all interfaces on the device.

interface interface-name—(Optional) Display MACsec connection information for the specified interface only.

**Required Privilege**  
view

**Related Documentation**  
- show security mka statistics on page 598

**List of Sample Output**  
show security macsec connections on page 593

**Output Fields**  
Table 65 on page 592 lists the output fields for the `show security macsec connections` command. Output fields are listed in the approximate order in which they appear.

**Table 65: show security macsec connections Output Fields**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields for Interface</td>
<td></td>
</tr>
<tr>
<td>Interface name</td>
<td>Name of the interface.</td>
</tr>
<tr>
<td>CA name</td>
<td>Name of the connectivity association. A connectivity association is named using the <code>connectivity-association</code> statement when you are enabling MACsec.</td>
</tr>
<tr>
<td>Cipher suite</td>
<td>Name of the cipher suite used for encryption.</td>
</tr>
<tr>
<td>Key server offset</td>
<td>Offset setting. The offset is set using the <code>offset</code> statement when configuring the connectivity association when using static connectivity association key (CAK) or dynamic security mode.</td>
</tr>
</tbody>
</table>
### Table 65: show security macsec connections Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Replay protect</strong></td>
<td>Replay protection setting. Replay protection is enabled when this output is on and disabled when this output is off. You can enable replay protection using the <code>replay-protect</code> statement in the connectivity association.</td>
</tr>
</tbody>
</table>

### Sample Output

**show security macsec connections**

```
user@host> show security macsec connections
Interface name: fxp1
CA name: ca1
Cipher suite: GCM-AES-128
Encryption: on
Key server offset: 0
Include SCI: no
Replay protect: off
Replay window: 0
```
**show security macsec statistics (SRX Series Devices)**

**Supported Platforms**
SRX340, SRX345

**Syntax**
```
show security macsec statistics
<brief | detail>
<interface interface-name>
```

**Release Information**
Command introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

**Description**
Display Media Access Control Security (MACsec) statistics.

**Options**
- none—Display MACsec statistics in brief form for all interfaces on the switch.
- brief | detail—(Optional) Display the specified level of output. Using the brief option is equivalent to entering the command with no options (the default). The detail option displays additional fields that are not visible in the brief output.

**NOTE:** The field names that only appear in this command output when you enter the detail option are mostly useful for debugging purposes by Juniper Networks support personnel.

**interface interface-name**—(Optional) Display MACsec statistics for the specified interface only.

**Required Privilege Level**
view

**Related Documentation**
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
- show interfaces (Gigabit Ethernet) SRX device on page 577
- show security mka sessions for SRX device on page 600

**List of Sample Output**
show security macsec statistics interface on page 597

**Output Fields**
Table 66 on page 595 lists the output fields for the show security macsec statistics command. Output fields are listed in the approximate order in which they appear.

The field names that appear in this command output only when you enter the detail option are mostly useful for debugging purposes by Juniper Networks support personnel. Those field names are, therefore, not included in this table.
## Table 66: show security macsec statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface name</td>
<td>Name of the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Fields for Secure Channel transmitted</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encrypted packets</td>
<td>Total number of packets transmitted out of the interface in the secure channel that were secured and encrypted using MACsec. Data packets are sent in the secure channel when MACsec is enabled, and are secured using a connectivity association key (CAK).</td>
<td>All levels</td>
</tr>
<tr>
<td>Encrypted bytes</td>
<td>Total number of bytes transmitted out of the interface in the secure channel that were secured and encrypted using MACsec. Data packets are sent in the secure channel when MACsec is enabled, and are secured using a connectivity association key (CAK).</td>
<td>All levels</td>
</tr>
<tr>
<td>Protected packets</td>
<td>Total number of packets transmitted out of the interface in the secure channel that were secured but not encrypted using MACsec. Data packets are sent in the secure channel when MACsec is enabled, and are secured using a connectivity association key (CAK).</td>
<td>All levels</td>
</tr>
<tr>
<td>Protected bytes</td>
<td>Total number of bytes transmitted out of the interface in the secure channel that were secured but not encrypted using MACsec. Data packets are sent in the secure channel when MACsec is enabled, and are secured using a connectivity association key (CAK).</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Fields for Secure Association transmitted</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encrypted packets</td>
<td>Total number of packets transmitted out of the interface in the connectivity association that were secured and encrypted using MACsec. The total includes the data packets transmitted in the secure channel and the control packets secured using a connectivity association key (CAK).</td>
<td>All levels</td>
</tr>
<tr>
<td>Protected packets</td>
<td>Total number of packets transmitted out of the interface in the connectivity association that were secured but not encrypted using MACsec. The total includes the data packets transmitted in the secure channel and the control packets secured using a connectivity association key (CAK).</td>
<td>All levels</td>
</tr>
</tbody>
</table>
### Table 66: show security macsec statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| **Accepted packets**   | The number of received packets that have been accepted by the secure channel on the interface. The secure channel is used to send all data plane traffic on a MACsec-enabled link.  
A packet is considered accepted for this counter when it has been received by this interface and it has passed the MACsec integrity check.  
This counter increments for traffic that is and is not encrypted using MACsec.                                                                                      | All levels      |
| **Validated bytes**    | The number of bytes that have been validated by the MACsec integrity check and received on the secure channel on the interface. The secure channel is used to send all data plane traffic on a MACsec-enabled link.  
This counter does not increment when MACsec encryption is disabled.                                                                                             | All levels      |
| **Decrypted bytes**    | The number of bytes received in the secure channel on the interface that have been decrypted. The secure channel is used to send all data plane traffic on a MACsec-enabled link.  
An encrypted byte has to be decrypted before it can be received on the receiving interface. The decrypted bytes counter is incremented for received traffic that was encrypted using MACsec. | All levels      |

**Fields for Secure Association received**

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| **Accepted packets**   | The number of received packets that have been accepted in the connectivity association on the interface. The counter includes all control and data plane traffic accepted on the interface.  
A packet is considered accepted for this counter when it has been received by this interface and it has passed the MACsec integrity check. | All levels      |
| **Validated bytes**    | The number of bytes that have been validated by the MACsec integrity check and received on the connectivity association on the interface. The counter includes all control and data plane traffic accepted on the interface.  
This counter does not increment when MACsec encryption is disabled.                                                                 | All levels      |
| **Decrypted bytes**    | The number of bytes received in the connectivity association on the interface that have been decrypted. The counter includes all control and data plane traffic accepted on the interface.  
An encrypted byte has to be decrypted before it can be received on the receiving interface. The decrypted bytes counter is incremented for received traffic that was encrypted using MACsec. | All levels      |
Sample Output

show security macsec statistics interface

user@host> show security macsec statistics interface fpx1 detail

Interface name: fpx1
Secure Channel transmitted
  Encrypted packets: 2397305
  Encrypted bytes:   12992480
  Protected packets: 0
  Protected bytes:   0
Secure Association transmitted
  Encrypted packets: 2397305
  Protected packets: 0
Secure Channel received
  Accepted packets:  2395850
  Validated bytes:   0
  Decrypted bytes:   131715088
Secure Association received
  Accepted packets:  2395850
  Validated bytes:   0
  Decrypted bytes:   0
**show security mka statistics**

**Supported Platforms**  
SRX340, SRX345

**Syntax**  
```
show security mka statistics
<interface interface-name>
```

**Release Information**  
Command introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

**Description**  
Display MACsec Key Agreement (MKA) protocol statistics.

The output for this command does not include statistics for MACsec data traffic. For MACsec data traffic statistics, see `show security macsec statistics for SRX device`.

**Options**  
- `interface interface-name`—(Optional) Display the MKA information for the specified interface only.

**Required Privilege Level**  
view

**Related Documentation**  
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
- show interfaces (Gigabit Ethernet) SRX device on page 577
- show security macsec statistics for SRX device on page 594

**List of Sample Output**  
show security mka statistics on page 599

**Output Fields**  
Table 67 on page 598 lists the output fields for the `show security mka statistics` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received packets</td>
<td>Number of received MKA control packets.</td>
</tr>
<tr>
<td></td>
<td>This counter increments for received MKA control packets only. This counter does not increment when data packets are received.</td>
</tr>
<tr>
<td>Transmitted packets</td>
<td>Number of transmitted MKA packets</td>
</tr>
<tr>
<td></td>
<td>This counter increments for transmitted MKA control packets only. This counter does not increment when data packets are transmitted.</td>
</tr>
<tr>
<td>Version mismatch packets</td>
<td>Number of version mismatch packets.</td>
</tr>
</tbody>
</table>
### Table 67: show security mka statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAK mismatch packets</td>
<td>Number of Connectivity Association Key (CAK) mismatch packets.</td>
</tr>
<tr>
<td></td>
<td>This counter increments when the connectivity association key (CAK) and connectivity association key name (CKN), which are user-configured values that have to match to enable MACsec, do not match for an MKA control packet.</td>
</tr>
<tr>
<td>ICV mismatch packets</td>
<td>Number of ICV mismatched packets.</td>
</tr>
<tr>
<td></td>
<td>This counter increments when the connectivity association key (CAK) value does not match on both ends of a MACsec-secured Ethernet link.</td>
</tr>
<tr>
<td>Duplicate message identifier packets</td>
<td>Number of duplicate message identifier packets.</td>
</tr>
<tr>
<td>Duplicate message number packets</td>
<td>Number of duplicate message number packets.</td>
</tr>
<tr>
<td>Duplicate address packets</td>
<td>Number of duplicate source MAC address packets.</td>
</tr>
<tr>
<td>Invalid destination address packets</td>
<td>Number of invalid destination MAC address packets.</td>
</tr>
<tr>
<td>Formatting error packets</td>
<td>Number of formatting error packets.</td>
</tr>
<tr>
<td>Old Replayed message number packets</td>
<td>Number of old replayed message number packets.</td>
</tr>
</tbody>
</table>

### Sample Output

**show security mka statistics**

```
user@host> show security mka statistics

Interface name: fxp1
Received packets: 3
Transmitted packets: 14
Version mismatch packets: 0
CAK mismatch packets: 0
ICV mismatch packets: 0
Duplicate message identifier packets: 0
Duplicate message number packets: 0
Duplicate address packets: 0
Invalid destination address packets: 0
Formatting error packets: 0
Old Replayed message number packets: 0
```
show security mka sessions (SRX Series Device)

**Supported Platforms**  SRX340, SRX345

**Syntax**  
```
show security mka sessions <interface interface-name>
```

**Release Information**  Command introduced in Junos OS Release 15.1X49-D60 for SRX340 and SRX345 devices.

**Description**  Display MACsec Key Agreement (MKA) session information.

**Options**
- `interface interface-name`—(Optional) Display the MKA information for the specified interface only.

**Required Privilege**  view

**Related Documentation**
- Understanding Media Access Control Security (MACsec) for SRX Series on page 361
- Configuring Media Access Control Security (MACsec) on page 363
- macsec on page 440
- show interfaces (Gigabit Ethernet) SRX device on page 577
- show security macsec statistics for SRX device on page 594

**List of Sample Output**  show security mka sessions on page 601

**Output Fields**  Table 68 on page 600 lists the output fields for the `show security mka sessions` command. Output fields are listed in the approximate order in which they appear.

### Table 68: show security mka sessions Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface name</td>
<td>Name of the interface.</td>
</tr>
<tr>
<td>Member identifier</td>
<td>Name of the member identifier.</td>
</tr>
<tr>
<td>CAK name</td>
<td>Name of the Connectivity Association Key (CAK). The CAK is configured using the <code>cak</code> keyword when configuring the pre-shared key.</td>
</tr>
<tr>
<td>Transmit interval</td>
<td>The transmit interval.</td>
</tr>
<tr>
<td>Outbound SCI</td>
<td>Name of the outbound secure channel identifier.</td>
</tr>
<tr>
<td>Message number</td>
<td>Number of the last data message.</td>
</tr>
</tbody>
</table>
Table 68: show security mka sessions Output Fields  (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key server</td>
<td>Key server status. The switch is the key server when this output is yes. The switch is not the key server when this output is no.</td>
</tr>
<tr>
<td>Key number</td>
<td>Key number.</td>
</tr>
<tr>
<td>Key server priority</td>
<td>The key server priority. The key server priority can be set using the key-server-priority statement.</td>
</tr>
<tr>
<td>Latest SAK AN</td>
<td>Name of the latest secure association key (SAK) association number.</td>
</tr>
<tr>
<td>Latest SAK KI</td>
<td>Name of the latest secure association key (SAK) key identifier.</td>
</tr>
<tr>
<td>Previous SAK AN</td>
<td>Name of the previous secure association key (SAK) association number.</td>
</tr>
<tr>
<td>Previous SAK KI</td>
<td>Name of the previous secure association key (SAK) key identifier.</td>
</tr>
</tbody>
</table>

Sample Output

```
show security mka sessions

user@host> show security mka sessions

Interface name: fxp1
 Member identifier: 71235CA1B780D0AF783F29C87
 CAK name: AAAA
 Transmit interval: 10000(ms)
 Outbound SCI: 30:7C:5E:44:98:42/1
 Message number: 2326 Key number: 2
 Key server: yes Key server priority: 16
 Latest SAK AN: 1 Latest SAK KI: 71235CA1B780D0AF783F29C87/2
 Previous SAK AN: 0 Previous SAK KI: 71235CA1B780D0AF783F29C87/1
```
show security internal-security-association

**Supported Platforms** SRX5400, SRX5600, SRX5800

**Syntax**

```
show security internal-security-association
```

**Release Information**

Command introduced in Junos OS Release 12.1X47-D10.

**Description**

Provide secure login by enabling the internal security association in a chassis cluster configuration.

**Required Privilege Level**

view

**Related Documentation**

- Chassis Cluster Feature Guide for SRX Series Devices

**List of Sample Output**

`show security internal-security-association` on page 602

**Output Fields**

Table 69 on page 602 lists the output fields for the `show security internal-security-association` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal SA Status</td>
<td>State of the internal SA option on the chassis cluster control link: enabled or disabled.</td>
</tr>
<tr>
<td>Iked Encryption Status</td>
<td>State of the iked encryption.</td>
</tr>
</tbody>
</table>

**Sample Output**

```
user@host>show security internal-security-association

node0:

Internal SA Status : Enabled
Iked Encryption Status : Enabled

node1:

Internal SA Status : Enabled
Iked Encryption Status : Enabled
```
show system license (View)

Supported Platforms  SRX Series, vSRX

Syntax  show system license  
<installed | keys | status | usage>


Description  Display licenses and information about how licenses are used.

Options  none—Display all license information.

installed—(Optional) Display installed licenses only.

keys—(Optional) Display a list of license keys. Use this information to verify that each expected license key is present.

status—(Optional) Display license status for a specified logical system or for all logical systems.

usage—(Optional) Display the state of licensed features.

Required Privilege Level  view

Related Documentation  •  Adding New Licenses (CLI Procedure)

List of Sample Output  show system license on page 604
show system license installed on page 604
show system license keys on page 605
show system license usage on page 605
show system license status logical-system all on page 605

Output Fields  Table 70 on page 603 lists the output fields for the show system license command. Output fields are listed in the approximate order in which they appear.

Table 70: show system license Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature name</td>
<td>Name assigned to the configured feature. You use this information to verify that all the features for which you installed licenses are present.</td>
</tr>
<tr>
<td>Licenses used</td>
<td>Number of licenses used by the device. You use this information to verify that the number of licenses used matches the number configured. If a licensed feature is configured, the feature is considered used.</td>
</tr>
</tbody>
</table>
### Table 70: show system license Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Licenses installed</strong></td>
<td>Information about the installed license key:</td>
</tr>
<tr>
<td></td>
<td>• <strong>License identifier</strong>—Identifier associated with a license key.</td>
</tr>
<tr>
<td></td>
<td>• <strong>License version</strong>—Version of a license. The version indicates how the license is validated, the type of signature, and the signer of the license key.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Valid for device</strong>—Device that can use a license key.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Features</strong>—Feature associated with a license.</td>
</tr>
<tr>
<td><strong>Licenses needed</strong></td>
<td>Number of licenses required for features being used but not yet properly licensed.</td>
</tr>
<tr>
<td><strong>Expiry</strong></td>
<td>Time remaining in the grace period before a license is required for a feature being used.</td>
</tr>
<tr>
<td><strong>Logical system license status</strong></td>
<td>Displays whether a license is enabled for a logical system.</td>
</tr>
</tbody>
</table>

### Sample Output

**show system license**

```bash
user@host> show system license
License usage:

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Licenses used</th>
<th>Licenses installed</th>
<th>Licenses needed</th>
<th>Expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>av_key_kaspersky_engine</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2012-03-30 01:00:00 IST</td>
</tr>
<tr>
<td>wf_key_surfcontrol_cpa</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2012-03-30 01:00:00 IST</td>
</tr>
<tr>
<td>dynamic-vpn</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>permanent</td>
</tr>
<tr>
<td>ax411-wlan-ap</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>permanent</td>
</tr>
</tbody>
</table>

Licenses installed:
License identifier: JUNOS301998
License version: 2
Valid for device: AG4909AA0080
Features:
av_key_kaspersky_engine - Kaspersky AV
date-based, 2011-03-30 01:00:00 IST - 2012-03-30 01:00:00 IST

License identifier: JUNOS302000
License version: 2
Valid for device: AG4909AA0080
Features:
wf_key_surfcontrol_cpa - Web Filtering
date-based, 2011-03-30 01:00:00 IST - 2012-03-30 01:00:00 IST

show system license installed

user@host> show system license installed
License identifier: JUNOS301998
License version: 2
Valid for device: AG4909AA0080
```
Features:
- av_key_kaspersky_engine - Kaspersky AV
date-based, 2011-03-30 01:00:00 IST - 2012-03-30 01:00:00 IST

License identifier: JUNOS302000
License version: 2
Valid for device: AG4909AA0080
Features:
- wf_key_surfcontrol_cpa - Web Filtering
date-based, 2011-03-30 01:00:00 IST - 2012-03-30 01:00:00 IST

show system license keys

user@host> show system license keys

XXXXXXXXXX xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx
xxxxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx
xxxxxxxx xxxxxx xxx

show system license usage

user@host> show system license usage

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Licenses used</th>
<th>Licenses installed</th>
<th>Licenses needed</th>
<th>Expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>av_key_kaspersky_engine</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2012-03-30</td>
</tr>
<tr>
<td>01:00:00 IST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wf_key_surfcontrol_cpa</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2012-03-30</td>
</tr>
<tr>
<td>01:00:00 IST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dynamic-vpn</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>permanent</td>
</tr>
<tr>
<td>ax411-wlan-ap</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>permanent</td>
</tr>
</tbody>
</table>

show system license status logical-system all

user@host> show system license status logical-system all
Logical system license status:

<table>
<thead>
<tr>
<th>Logical system name</th>
<th>license status</th>
</tr>
</thead>
<tbody>
<tr>
<td>root-logical-system</td>
<td>enabled</td>
</tr>
<tr>
<td>LSYS0</td>
<td>enabled</td>
</tr>
<tr>
<td>LSYS1</td>
<td>enabled</td>
</tr>
<tr>
<td>LSYS2</td>
<td>enabled</td>
</tr>
</tbody>
</table>